【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點E的直線DE,垂足為點D,且ME平分∠DMN

求證:(1DE是⊙O的切線;

2ME2MDMN

【答案】1)證明見解析;(2)證明見解析

【解析】

1)求出OEDM,求出OEDE,根據(jù)切線的判定得出即可;
2)連接EN,求出∠MDE=MEN,求出△MDE∽△MEN,根據(jù)相似三角形的判定得出即可.

證明:(1)∵ME平分∠DMN

∴∠OME=∠DME,

OMOE,

∴∠OME=∠OEM

∴∠DME=∠OEM,

OEDM

DMDE,

OEDE

OEO,

DE是⊙O的切線;

2)連接EN

DMDE,MN為⊙O的直徑,

∴∠MDE=∠MEN90°,

∵∠NME=∠DME,

∴△MDE∽△MEN

,

ME2MDMN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某水果店以10/千克的價格購進某種水果進行銷售,經(jīng)過市場調查獲得部分數(shù)據(jù)如下表:

銷售價格x(元/千克)

10

13

16

19

22

日銷售量y(千克)

100

85

70

55

40

1)請根據(jù)表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識刻畫yx之間的函數(shù)關系;

2)該水果店應該如何確定這批水果的銷售價格,才能使日銷售利潤最大?

3)若該水果店平均每銷售1千克這種水果會損耗a千克,當20≤x≤22時,水果店日獲利的最大值為405元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以點為圓心,為半徑作優(yōu)弧,連接,且,在弧上任意取點(在點的順時針方向)且使,以為邊向弧內作正三角形

1)發(fā)現(xiàn):不論點在弧上什么位置,點與點的距離不變,點與點的距離是_____;點到直線的最大距離是_______

2)思考:當點在直線上時,求點的距離,在備用圖1中畫出示意圖,并寫出計算過程.

3)探究:當垂直或平行時,直接寫出點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊矩形紙片ABCD,AB=8,AD=6.將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AEBC的交點為F,則△CEF的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的中點。在射線上任意取一點,連接,將線段繞點逆時針方向旋轉80°,點的對應點是點,連接.

1)如圖1,當點落在射線上時,

_________________°

②直線與直線的位置關系是______________________。

2)如圖2,當點落在射線的左側時,試判斷直線與直線的位置關系,并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位現(xiàn)要組織其市場和生產部的員工游覽該公園,門票價格如下:

購票人數(shù)

150

51100

100以上

門票價格

13/

11/

9/

如果按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1245元;如果兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為945元.那么該公司這兩個部的人數(shù)之差的絕對值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,過點C作⊙O的切線,交直徑AB的延長于點D,若∠ABC=65°,則∠D的度數(shù)是(

A.25°B.30°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.

(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;

(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.

(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當FH=,DM=4時,求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解初三年級600名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:)分成五組(;;;),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調查的樣本容量是________,并補全頻數(shù)分布直方圖;

2組學生的頻率為_________,在扇形統(tǒng)計圖中組的圓心角是__________度;

3)請你估計該校初三年級體重超過的學生大約有多少名?

查看答案和解析>>

同步練習冊答案