【題目】在△ABC中,邊AB、AC的垂直平分線分別交邊BC于點(diǎn)D、E,若∠DAE=40°,則∠BAC的度數(shù)為________________.

【答案】20°或110°

【解析】

整體代換求解即可.

(1)當(dāng)△ABC為銳角三角形時(shí),易知∠ABC=BAD,EAC=ECA,

ACE=DAE–∠DAC,ECA=2ABC+DAC,

求得∠BAC=BAD+DAC=20°.

(2)當(dāng)△ABC為鈍角三角形時(shí),∠DAB=B,∠C=EAC,所以,2(∠B+C+40°=180°,求得∠BAC=110°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題。下面我們來探究由數(shù)思形,以形助數(shù)的方法在解決代數(shù)問題中的應(yīng)用.

探究一:求不等式的解集

1)探究的幾何意義

如圖,在以O為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A'對(duì)應(yīng)點(diǎn)的數(shù)為,由絕對(duì)值的定義可知,點(diǎn)A'與O的距離為,

可記為:AO=。將線段AO向右平移一個(gè)單位,得到線段AB,,此時(shí)點(diǎn)A對(duì)應(yīng)的數(shù)為,點(diǎn)B的對(duì)應(yīng)數(shù)是1,

因?yàn)?/span>AB= AO,所以AB=。

因此,的幾何意義可以理解為數(shù)軸上所對(duì)應(yīng)的點(diǎn)A1所對(duì)應(yīng)的點(diǎn)B之間的距離AB。

2)求方程=2的解

因?yàn)閿?shù)軸上3所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為

3)求不等式的解集

因?yàn)?/span>表示數(shù)軸上所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)所對(duì)應(yīng)的數(shù)的范圍。

請(qǐng)?jiān)趫D的數(shù)軸上表示的解集,并寫出這個(gè)解集

探究二:探究的幾何意義

1)探究的幾何意義

如圖,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為,過MMPx軸于P,作MQy軸于Q,則點(diǎn)P點(diǎn)坐標(biāo)(),Q點(diǎn)坐標(biāo)(),|OP|=,|OQ|=,

RtOPM中,PMOQy,則

因此的幾何意義可以理解為點(diǎn)M與原點(diǎn)O0,0)之間的距離OM

2)探究的幾何意義

如圖,在直角坐標(biāo)系中,設(shè)點(diǎn) A'的坐標(biāo)為,由探究(二)(1)可知,

AO=,將線段 AO先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(1,5)。

因?yàn)?/span>AB= AO,所以 AB=,因此的幾何意義可以理解為點(diǎn)A)與點(diǎn)B1,5)之間的距離。

3)探究的幾何意義

請(qǐng)仿照探究二(2)的方法,在圖中畫出圖形,并寫出探究過程。

4的幾何意義可以理解為:_________________________.

拓展應(yīng)用:

1+的幾何意義可以理解為:點(diǎn)A與點(diǎn)E的距離與點(diǎn)AA與點(diǎn)F____________(填寫坐標(biāo))的距離之和。

2+的最小值為____________(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8的立方根是(

A.2B.±2C.2D.512

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x22x10時(shí),配方后的形式為( 。

A.x223B.x225C.x120D.x122

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( 。

A.a3a2a6B.a7÷a3a4

C.(﹣3a2 =﹣6a2D.a12a21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:ax2﹣9ay2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)坐標(biāo)分別是(00),(4,0),(32),以A,B,C三點(diǎn)

為頂點(diǎn)畫平行四邊形,則第四個(gè)頂點(diǎn)不可能在( ).

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn),,.點(diǎn)為拋物線上的動(dòng)點(diǎn),過點(diǎn)軸,交直線于點(diǎn),交軸于點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)過點(diǎn)軸,垂足為點(diǎn).若四邊形為正方形(此處限定點(diǎn)在對(duì)稱軸的右側(cè)),求該正方形的面積;

(3)若,,求點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為6的等邊中,點(diǎn)、分別在、邊上, , .

(l)如圖1,將沿射線方向平移,得到,邊的交點(diǎn)為,邊的角平分線交于點(diǎn).當(dāng)多大時(shí),四邊形為菱形?并說明理由.

(2)如圖2,將繞點(diǎn)旋轉(zhuǎn)),得到,連接,邊的中點(diǎn)為.

在旋轉(zhuǎn)過程中,怎樣的數(shù)量關(guān)系?并說明理由.

連接,當(dāng)最大時(shí),求的值.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案