【題目】數(shù)軸上從左到右有A,B,C三個點,點C對應的數(shù)是10,AB=BC=20.
(1)點A對應的數(shù)是 ,點B對應的數(shù)是 .
(2)動點P從A出發(fā),以每秒4個單位長度的速度向終點C移動,同時,動點Q從點B出發(fā),以每秒1個單位長度的速度向終點C移動,設移動時間為t秒.
①用含t的代數(shù)式表示點P對應的數(shù)是 ,點Q對應的數(shù)是 ;
②當點P和點Q間的距離為8個單位長度時,求t的值.
【答案】(1)﹣30,﹣10;(2)①4t﹣30,t﹣10;②t的值為4或.
【解析】
(1)由AB,BC的長度結合點C對應的數(shù)及點A,B,C的位置關系,可得出點A,B對應的數(shù);
(2)①由點P,Q的出發(fā)點、運動方向及速度,可得出運動時間為t秒時點P,Q對應的數(shù);
②由①結合PQ=8,可得出關于t的含絕對值符號的一元一次方程,解之即可得出結論.
解:(1)∵AB=BC=20,點C對應的數(shù)是10,點A在點B左側,點B在點C左側,
∴點B對應的數(shù)為10﹣20=﹣10,點A對應的數(shù)為﹣10﹣20=﹣30.
故答案為:﹣30;﹣10.
(2)①當運動時間為t秒時,點P對應的數(shù)是4t﹣30,點Q對應的數(shù)是t﹣10.
故答案為:4t﹣30;t﹣10.
②依題意,得:|t﹣10﹣(4t﹣30)|=8,
∴20﹣3t=8或3t﹣20=8,
解得:t=4或t=.
∴t的值為4或.
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知3x=2y=5z≠0,求的值;
(2)某市政工程計劃將安裝的路燈交給甲、乙兩家燈飾廠完成,已知甲廠生產(chǎn)100個路燈與乙廠生產(chǎn)150個路燈所用時間相同,且甲廠比乙廠每天少生產(chǎn)10個路燈,問甲、乙兩家工廠每天各生產(chǎn)路燈多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當∠BOD=°時,四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某屆世界杯足球賽即將開幕,某媒體足球欄目從參加世界杯的球隊中選出五支傳統(tǒng)強隊:意大利隊、德國隊、西班牙隊、巴西隊、阿根廷隊,對哪支球隊最有可能獲得冠軍進行了問卷調查,為了使調查結果有效,每位被調查者只能填寫一份問卷,在問卷中必須選擇這五支球隊中的一隊作為調查結果.從收集到的4800份有效問卷中隨機抽取部分問卷進行統(tǒng)計,繪制了統(tǒng)計圖表的一部分如下:
根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)a= ,b= ;
(2)根據(jù)以上信息,請補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調查結果,請你估計在提供有效問卷的這4800人中有多少人預測德國隊最有可能獲得冠軍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:善于思考的小軍在解方程組時,采用了一種“整體代換”的解法,
解:將方程②變形:4x+10y+y=5即2(2x+5y)+y=5③,把方程①代入③得:2×3+y=5,y=﹣1,把y=﹣1代入①得x=4,所以,方程組的解為.
請你解決以下問題:
(1)模仿小軍的“整體代換”法解方程組.
(2)已知x,y滿足方程組,求x2+4y2﹣xy的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PQ∥MN,A、B分別為直線MN、PQ上兩點,且∠BAN=45°,若射線AM繞點A順時針旋轉至AN后立即回轉,射線BQ繞點B逆時針旋轉至BP后立即回轉,兩射線分別繞點A、點B不停地旋轉,若射線AM轉動的速度是a°/秒,射線BQ轉動的速度是b°/秒,且a、b滿足|a﹣5|+(b﹣1)2=0.(友情提醒:鐘表指針走動的方向為順時針方向)
(1)a= ,b= ;
(2)若射線AM、射線BQ同時旋轉,問至少旋轉多少秒時,射線AM、射線BQ互相垂直.
(3)若射線AM繞點A順時針先轉動18秒,射線BQ才開始繞點B逆時針旋轉,在射線BQ到達BA之前,問射線AM再轉動多少秒時,射線AM、射線BQ互相平行?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點E從D點出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點F從點C出發(fā),以每秒1個單位的速度沿CB向點B作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動,假設移動時間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時的移動時間t和G點的移動距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com