【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求出對稱軸和頂點(diǎn)坐標(biāo).
【答案】(1)拋物線的解析式為,(2)對稱軸x=2, 頂點(diǎn)坐標(biāo) (2,9).
【解析】試題分析:(1)、把三點(diǎn)代入函數(shù)解析式列出三元一次方程組,從而得出函數(shù)解析式;(2)、根據(jù)函數(shù)解析式求出點(diǎn)B和點(diǎn)M的坐標(biāo),然后作ME⊥y軸于點(diǎn)E,根據(jù)△MCB的面積=梯形EDBM的面積-△ECM的面積-△COB的面積得出答案.
試題解析:(1)依題意:
(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1 ∴B(5,0)
由,得M(2,9) 作ME⊥y軸于點(diǎn)E,
則可得S△MCB=15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使∠BOC=60°,將一個直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時針方向轉(zhuǎn)動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時針轉(zhuǎn)動到某個位置時,若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于三角形的內(nèi)心說法正確的是( )
A.內(nèi)心是三角形三條角平分線的交點(diǎn)
B.內(nèi)心是三角形三邊中垂線的交點(diǎn)
C.內(nèi)心到三角形三個頂點(diǎn)的距離相等
D.鈍角三角形的內(nèi)心在三角形外
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AB上一點(diǎn),過點(diǎn)O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠BOE=3∠DOE,∠COE=70°.
求:(1)∠BOE的度數(shù);(2)∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點(diǎn),動點(diǎn)A、B同時從原點(diǎn)出發(fā),動點(diǎn)A每秒運(yùn)動x個單位,動點(diǎn)B每秒運(yùn)動y個單位,且動點(diǎn)A運(yùn)動到的位置對應(yīng)的數(shù)記為a,動點(diǎn)B運(yùn)動到的位置對應(yīng)的數(shù)記為b,定點(diǎn)C對應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= ,y= ,并請在數(shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動點(diǎn)A、B在(1)運(yùn)動后的位置上保持原來的速度,且同時向正方向運(yùn)動z秒后使得|a|=|b|,使得z= .
(3)若動點(diǎn)A、B在(1)運(yùn)動后的位置上都以每秒2個單位向正方向運(yùn)動繼續(xù)運(yùn)動t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊運(yùn)動員在相同條件下的射擊160次,其成績記錄如下:
(1)根據(jù)上表中的信息將兩個空格的數(shù)據(jù)補(bǔ)全(射中9環(huán)以上的次數(shù)為整數(shù),頻率精確到0.01);
(2)根據(jù)頻率的穩(wěn)定性,估計這名運(yùn)動員射擊一次時“射中9環(huán)以上”的概率(精確到0.1),
并簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,
(1)⊙O的弦AE交于BC于D.求證:ABAC=ADAE;
(2)在(1)的條件下當(dāng)弦AE的延長線與BC的延長線相交于點(diǎn)D時,上述結(jié)論是否還成立?若成立,請給予證明.若不成立,請說明理由.
(3)已知⊙O 的半徑2,∠ACB=40°,求BA的長.(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果精確到0.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com