【題目】為阻斷疫情向校園蔓延,確保師生生命安全和身體健康,教育部2020年1月29日下發(fā)通知,要求今年春季學(xué)期延期開學(xué),“停課不停學(xué)”,統(tǒng)籌利用網(wǎng)絡(luò)電視資源進行教學(xué),某校為了讓學(xué)生能夠達到最佳的學(xué)習(xí)效果,確定老師們可以選用以下三種直播授課方式:A.智慧云直播,B.釘釘直播,C.騰訊會議直播.
(1)張明老師從三種網(wǎng)絡(luò)授課方式中隨機選取一種,是智慧云直播的概率為 ;
(2)張明和李剛兩位老師從中隨機各選取一種網(wǎng)絡(luò)直播方式進行授課,請你用列表法或畫樹狀圖法,求出張明和李剛兩位老師選取不同的網(wǎng)絡(luò)直播授課方式的概率.
【答案】(1);(2).
【解析】
(1)直接利用概率公式計算可得;
(2)列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再利用概率公式求解可得.
(1)張明老師從三種網(wǎng)絡(luò)授課方式中隨機選取一種,是智慧云直播的概率為.
故答案為:;
(2)根據(jù)題意,列表格如下:
A | B | C | |
A | (A,A) | (A,B) | (A,C) |
B | (B,A) | (B,B) | (B,C) |
C | (C,A) | (C,B) | (C,C) |
共有9種等可能性的結(jié)果,其中兩位老師選取不同的網(wǎng)絡(luò)直播授課方式的結(jié)果有6種,
所以,P(兩位老師選取不同的網(wǎng)絡(luò)直播授課方式)=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車,沿小玲行進的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時間忽略不計).當(dāng)媽媽剛回到家時,小玲離學(xué)校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,與x軸交于兩點A,B(點A在點B的左側(cè)),與y軸交于點C.
(Ⅰ)求點A,B和點C的坐標(biāo);
(Ⅱ)已知P是線段上的一個動點.
①若軸,交拋物線于點Q,當(dāng)取最大值時,求點P的坐標(biāo);
②求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(其中)的圖像與軸交于、兩點,與軸交于點.
(1)點的坐標(biāo)為 , ;
(2)若為的外心,且與的面積之比為,求的值;
(3)在(2)的條件下,試探究拋物線上是否存在點,使得,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀理解]
構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.
例如:如圖,D是△ABC邊AB上一點,E是AC的中點,過點C作CF∥AB,交DE的延長線于點F,則易證E是線段DF的中點.
[經(jīng)驗運用]
請運用上述閱讀材料中所積累的經(jīng)驗和方法解決下列問題.
(1)如圖1,在正方形ABCD中,點E在AB上,點F在BC的延長線上,且滿足AE=CF,連接EF交AC于點G.
求證:①G是EF的中點;
②CG=BE;
[拓展延伸]
(2)如圖2,在矩形ABCD中,AB=2BC,點E在AB上,點F在BC的延長線上,且滿足AE=2CF,連接EF交AC于點G.探究BE和CG之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,若點E在BA的延長線上,點F在線段BC上,DF交AC于點H,BF=2,CF=1,( 2)中的其它條件不變,請直接寫出GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,PA是過正方形頂點A的直線,作DE⊥PA于E,將射線DE繞點D逆時針旋轉(zhuǎn)45°與直線PA交于點F.
(1)如圖1,當(dāng)∠PAD=45°時,點F恰好與點A重合,則的值為 ;
(2)如圖2,若45°<∠PAD<90°,連接BF、BD,試求的值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣、兩類薄弱學(xué)校全部進行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬元.
(1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬元?
(2)若該縣的類學(xué)校不超過5所,則類學(xué)校至少有多少所?
(3)我市計劃今年對該縣、兩類學(xué)校共6所進行改造,改造資金由國家財政和地方財政共同承擔(dān).若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到、兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請你通過計算求出有幾種改造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交點A.點B,與x軸相交于點C,其中點A的坐標(biāo)為(-2,4),點B的縱坐標(biāo)為2.
(1)當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.(直接寫出來)
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com