【題目】如圖,在直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)寫(xiě)出點(diǎn)C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)點(diǎn)C的坐標(biāo)為(2,6);
(2)點(diǎn)D的坐標(biāo)是(,0)
(3)α﹣β=θ,理由見(jiàn)解析.
【解析】分析:(1)由點(diǎn)的坐標(biāo)的特點(diǎn),確定出FC=2,OF=6得出C(2,6) ;
(2)分點(diǎn)D在線段OA和在OA延長(zhǎng)線兩種情況進(jìn)行計(jì)算;
(3)分點(diǎn)D在線段OA上時(shí), 和在OA延長(zhǎng)線兩種情況進(jìn)行計(jì)算;
解:(1)C(2,6);
(2)設(shè)D(x,0),當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),
若點(diǎn)D在線段OA上,
∵OD=3AD,
∴×6x=3××6(6﹣x),
∴x= ,
∴D(,0);
若點(diǎn)D在線段OA延長(zhǎng)線上,
∵OD=3AD,
∴×6x=3××6(x﹣6),
∴x=9,
∴D(9,0)
(3)如圖2.
過(guò)點(diǎn)D作DE∥OC,
由平移的性質(zhì)知OC∥AB.
∴OC∥AB∥DE.
∴∠OCD=∠CDE,∠EDB=∠DBA.
若點(diǎn)D在線段OA上,
∠CDB=∠CDE+∠EDB=∠OCD+∠DBA,
即α+β=θ;
若點(diǎn)D在線段OA延長(zhǎng)線上,
∠CDB=∠CDE﹣∠EDB=∠OCD﹣∠DBA,
即α﹣β=θ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,試判斷BE與CF的位置關(guān)系,并說(shuō)明你的理由.請(qǐng)補(bǔ)全下列說(shuō)理過(guò)程.
解:BE ______ CF.
理由是:已知.
______ ______ 垂直的定義
已知.
=______ .(等式的基本性質(zhì))
即 ______
______ ( ______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)三種國(guó)慶活動(dòng)方案的意見(jiàn),對(duì)該校學(xué)生進(jìn)行了一次抽樣調(diào)查(被調(diào)查學(xué)生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)在這次調(diào)查中共調(diào)查了名學(xué)生;扇形統(tǒng)計(jì)圖中方案1所對(duì)應(yīng)的圓心角的度數(shù)為度;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校有1000名學(xué)生,試估計(jì)該校贊成方案1的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接鄭州市第二屆“市長(zhǎng)杯”青少年校園足球超級(jí)聯(lián)賽,某學(xué)校組織了一次體育知識(shí)競(jìng)賽.每班選25名同學(xué)參加比賽,成績(jī)分別為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)得分依次記為100分、90分、80分、70分.學(xué)校將八年級(jí)一班和二班的成績(jī)整理并繪制成統(tǒng)計(jì)圖,如圖所示.
(1)把一班競(jìng)賽成績(jī)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寫(xiě)出下表中a、b、c的值:
(3)根據(jù)(2)的結(jié)果,請(qǐng)你對(duì)這次競(jìng)賽成績(jī)的結(jié)果進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)在一條筆直的公路旁依次有A、B、C三個(gè)村莊,甲、乙兩人同時(shí)分別從A、B兩村出發(fā),甲騎摩托車,乙騎電動(dòng)車沿公路勻速駛向C村,最終到達(dá)C村.設(shè)甲、乙兩人到C村的距離y1,y2(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示,請(qǐng)回答下列問(wèn)題:
(1)A、C兩村間的距離為________km,a=________;
(2)求出圖中點(diǎn)P的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)乙在行駛過(guò)程中,何時(shí)距甲10km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全是老百姓關(guān)注的話題,在食品中添加過(guò)量的添加劑對(duì)人體有害,但適量的添加劑對(duì)人體無(wú)害且有利于食品的儲(chǔ)存和運(yùn)輸.某飲料加工廠生產(chǎn)的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產(chǎn)了A、B兩種飲料共100瓶,問(wèn)A、B兩種飲料各生產(chǎn)了多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察分析下列方程:① ,② ,③ ;請(qǐng)利用它們所蘊(yùn)含的規(guī)律,求關(guān)于x的方程 (n為正整數(shù))的根,你的答案是: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com