精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,在△ABC中,AB=AC,∠BAD=30°,∠CAD=50°,AE=AD,
(1)求∠EDC的度數.
(2)若把條件“∠CAD=50°”去掉,你是否還能求出∠EDC的度數?若能,請寫出求解過程;若不能,請說明理由.
分析:(1)根據三角形外角的性質,可得:∠ADE+∠EDC=∠B+∠BAD,∠AED=∠EDC+∠C;
(2)根據等腰三角形的性質,可得:∠ADE=∠AED,∠B=∠C;等量代換后,即可得出∠EDC=
1
2
∠BAD,與∠CAD的度數無關.
解答:解:(1)△ADE中,AD=AE,∠ADE=∠AED;
∵∠AED=∠EDC+∠C,而∠ADE+∠EDC=∠B+∠BAD;
∴2∠EDC=∠B-∠C+∠BAD;
∵AB=AC,∴∠B=∠C;
∴∠EDC=
1
2
∠BAD=15°.

(2)由(1)的解答過程,可知:∠EDC的度數與∠CAD無關,故可以將條件“∠CAD=50°”去掉.
∠EDC的度數不變,仍為15°.
點評:此題主要考查了等腰三角形的性質以及三角形外角的性質;發(fā)現(xiàn)∠EDC的度數與∠CAD無關是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案