【題目】已知線段AB=20,點(diǎn)C在BA的延長線上,點(diǎn)D在直線AB上,AC=12,BD=16,點(diǎn)M是線段CD的中點(diǎn),則AM的長為_____.
【答案】4或12.
【解析】
分D在線段AB上和D在AB的延長線上兩種情況,分別用AC和CM表示出AM求解即可.
如圖1,當(dāng)D在線段AB上時(shí),
∵AB=20,AC=12,
∴BC=AB+AC=32,
∵BD=16,
∴CD=16,
∵點(diǎn)M是線段CD的中點(diǎn),
∴CM=CD=8,
∴AM=AC﹣CM=4;
如圖2,當(dāng)D在AB的延長線上時(shí),
∵AB=20,AC=12,
∴BC=AB+AC=32,
∵BD=16,
∴CD=BC+BD=48,
∵點(diǎn)M是線段CD的中點(diǎn),
∴CM= CD=24,
∴AM=CM﹣AC=24﹣12=12,
故答案為:4或12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅心食品店想網(wǎng)購一種花生包裝袋,在網(wǎng)上搜索了、兩家網(wǎng)店(如圖所示),已知這兩家網(wǎng)店的這種花生包裝袋質(zhì)量相同,請看圖回答下列問題:
(1)假若紅心食品店想購買個(gè)花生包裝袋,那么在、兩家網(wǎng)店分別需要花多少錢(用含有的式子表示)?(提示:如需付運(yùn)費(fèi)時(shí),運(yùn)費(fèi)只需付一次,即6元)
(2)紅心食品店打算一次購買200個(gè)花生包裝袋,選擇哪家網(wǎng)店更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進(jìn)多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線DE上有一點(diǎn)O,過點(diǎn)O在直線DE上方作射線OC,∠COE=140°,將一直角三角板AOB的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞著點(diǎn)O按每秒10°的速度逆時(shí)針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時(shí)間為t秒.
(1)當(dāng)直角三角板旋轉(zhuǎn)到如圖2的位置時(shí),OA恰好平分∠COD,求此時(shí)∠BOC的度數(shù);
(2)若射線OC的位置保持不變,在旋轉(zhuǎn)過程中,是否存在某個(gè)時(shí)刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請求出t的取值,若不存在,請說明理由;
(3)若在三角板開始轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒15°的速度逆時(shí)針旋轉(zhuǎn)一周,從旋轉(zhuǎn)開始多長時(shí)間,射線OC平分∠BOD.直接寫出t的值.(本題中的角均為大于0°且小于180°的角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P(1,2).
(1)在平面直角坐標(biāo)系中描出點(diǎn)P(保留畫圖痕跡);
(2)如果將點(diǎn)P向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度得到點(diǎn)P',則點(diǎn)P'的坐標(biāo)為 .
(3)點(diǎn)A在坐標(biāo)軸上,若S△OAP=2,直接寫出滿足條件的點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情景】利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.
例如:張老師給小聰提出這樣一個(gè)問題:
如圖1,在△ABC中,AB=3,AD=6,問△ABC的高AD與CE的比是多少?
小聰?shù)挠?jì)算思路是:
根據(jù)題意得:S△ABC=BCAD=ABCE.
從而得2AD=CE,∴
請運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問題:
(1)【類比探究】
如圖2,在ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,
求證:BO平分角AOC.
(2)【探究延伸】
如圖3,已知直線m∥n,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90°,兩平行線m、n間的距離為4.求證:PAPB=2AB.
(3)【遷移應(yīng)用】
如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長之和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com