【題目】直線y=﹣kx+k﹣3與直線y=kx在同一坐標(biāo)系中的大致圖象可能是( 。

A. B. C. D.

【答案】B

【解析】

y=kx過(guò)第一、三象限,則k>0,所以y=-kx+k-3過(guò)第二、四象限,可對(duì)A、D進(jìn)行判斷;若y=kx過(guò)第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過(guò)第一、三象限,與y軸的交點(diǎn)在x軸下方,則可對(duì)B、C進(jìn)行判斷.

A、y=kx過(guò)第一、三象限,則k>0,所以y=-kx+k-3過(guò)第二、四象限,所以A選項(xiàng)錯(cuò)誤;

B、y=kx過(guò)第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過(guò)第一、三象限,與y軸的交點(diǎn)在x軸下方,所以B選項(xiàng)正確;

C、y=kx過(guò)第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過(guò)第一、三象限,與y軸的交點(diǎn)在x軸下方,所以C選項(xiàng)錯(cuò)誤;

D、y=kx過(guò)第一、三象限,則k>0,所以y=-kx+k-3過(guò)第二、四象限,所以D選項(xiàng)錯(cuò)誤.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為AC的中點(diǎn),點(diǎn)E為線段AB上一動(dòng)點(diǎn),連接DE經(jīng)過(guò)點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.

(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),拋物線y=ax2+bx+8的對(duì)稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,分別探究下面兩個(gè)圖形中∠APC和∠PAB、∠PCD的關(guān)系,請(qǐng)從你所得兩個(gè)關(guān)系中選出任意一個(gè),說(shuō)明你探究的結(jié)論的正確性.

結(jié)論:(1)

(2)

選擇結(jié)論: ,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB:y=kx+2kx軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,且SOAB=3

(1) A、B兩點(diǎn)的坐標(biāo)

(2) 將直線ABA點(diǎn)順時(shí)針旋轉(zhuǎn)45°,交y軸于點(diǎn)C,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:邊長(zhǎng)為12的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1、S2 , 則S1+S2的值為(
A.60
B.64
C.68
D.72

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度數(shù).

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,能源與環(huán)境已成為人們?nèi)找骊P(guān)注的問(wèn)題.據(jù)統(tǒng)計(jì),全球每年大約會(huì)產(chǎn)生近3億噸的塑料垃圾(例如平時(shí)用的礦泉水瓶子等)和約5億噸的廢鋼鐵(例如平時(shí)扔掉的易拉罐等),某中學(xué)為了培養(yǎng)學(xué)生的環(huán)保意識(shí),開(kāi)展了環(huán)境保護(hù),從我做起的主題活動(dòng),七(2)班同學(xué)在活動(dòng)中積極響應(yīng),在甲小區(qū)設(shè)立了回收塑料瓶和易拉罐的兩個(gè)垃圾桶,班長(zhǎng)小明對(duì)2周的收集情況進(jìn)行了統(tǒng)計(jì),根據(jù)下列統(tǒng)計(jì)表和廢品收購(gòu)站的價(jià)格表,解決下列問(wèn)題:

(1)全班2周共收集了   斤塑料瓶,收集了   斤易拉罐.

(2)班委會(huì)決定給貧困山區(qū)的孩子們捐贈(zèng)一套價(jià)值50.4元的勵(lì)志叢書(shū),你認(rèn)為按照這樣的收集速度,至少需要收集幾周才能實(shí)現(xiàn)這個(gè)愿望?寫(xiě)出計(jì)算過(guò)程.

(3)七(1)班在乙小區(qū)也設(shè)立了塑料瓶和易拉罐的回收點(diǎn),兩周收集塑料瓶和易拉罐共計(jì)440個(gè),按相同價(jià)格出售后,所得金額比七(2)班兩個(gè)周的廢品回收金額多1.8元,求七(1)班同學(xué)兩周收集的塑料瓶和易拉罐各多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=﹣kx+k﹣3與直線y=kx在同一坐標(biāo)系中的大致圖象可能是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案