【題目】如圖1,已知直線,點,在直線上,點,在直線上,且,若保持不動,線段向右勻速平移,如圖2反映了的長度隨時間的變化而變化的情況,則:
(1)在線段開始平移之前, ;
(2)線段向右平移了 ,向右平移的速度是 ;
(3)如圖3反映了的面積隨時間的變化而變化的情況,則
①平行線,之間的距離是 ;
②當時,直接寫出關于的函數關系式(不必化簡).
【答案】(1)8;(2)①5;②2;(3)①4;②
【解析】
(1)在線段開始平移之前,由圖2可知,也就是t=0,可得.
(2)由圖2可得,線段向右平移了,的長度增加,由此可求得平移的速度.
(3)①設平行線,之間的距離是,由圖2和圖3可知,t=0時,,的面積為,由此可求得x.
②由圖可知,時間從8s到14s期間,6s時間,沿直線方向平行移動的距離為,
可得平行移動的速度為,再由面積公式可列出關于的函數關系式.
(1)由圖象2可知,在線段開始平移之前,,
故答案為:8.
(2)線段向右平移了,
的增加長度,
∴向右平移的速度是
故答案為:5;2.
(3)①設平行線,之間的距離是
由圖2可知,在線段開始平移之前,,
由圖3可知,在線段開始平移之前,的面積為.
則,
解得,,
故答案為:4.
②由圖可知,時間從8s到14s期間,共計6s時間,沿直線方向平行移動的距離為
∴沿直線方向平行移動的速度為,
則.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,點E在BC邊上,且BE:EC=1:3.動點P從點B出發(fā),沿BA運動到點A停止.過點E作EF⊥PE交邊AD或CD于點F,設M是線段EF的中點,則在點P運動的整個過程中,點M運動路線的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點
(1)求點A、B坐標和∠BAO度數
(2)點C、D分別是線段OA、AB上一動點(不與端點重合),且CD=DA,設線段OC的長度為x ,,請求出y關于x的函數關系式以及定義域
(3)點C、D分別是射線OA、射線BA上一動點,且CD=DA,當ΔODB為等腰三角形時,求C的坐標(第(3)小題直接寫出分類情況和答案,不用過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形中,,,點是的中點,動點從點出發(fā),以每秒的速度沿運動,最終到達點.若點運動的時間為秒,那么當_____________秒時,的面積等于.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開通了互聯網家校合育教育平臺,為了解家長使用平臺的情況,學校將家長的使用情況分為”經常使用”、“偶爾使用”“和“不使用”三種類型,借助該平臺大數據功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統計圖:
請根據圖中信息解答下列問題
(1)此次調查的家長總人數為 ;
(2)扇形統計圖中代表“不使用”類型的扇形圓心角的度數是 °,并補全條形統計圖;
(3)若該校八年級學生家長共有1200人,根據此次調查結果估計該校八年級中“經常使用”類型的家長約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點P為正方形邊上一動點,若點P從點A出發(fā)沿A→D→C→B→A勻速運動一周.設點P走過的路程為x,△ADP的面積為y,則下列圖象能大致反映y與x的函數關系的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正確的結論是( )
A.①②
B.①③
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據閱讀內容,在括號內填寫推理依據.
如果兩條平行線被三條直線所截,那么一對內錯角的角平分線一定互相平行.
已知:AB∥CD,EM平分∠AEF,FN平分∠EFD
求證: EM∥FN
證明:
∵AB∥CD
∴∠AEF=∠DFE ( )
∵EM平分∠AEF
∴∠MEF=∠ AEF ( )
∵FN平分∠EFD
∴∠EFN=∠ EFD ( )
∴∠MEF=∠ EFN
∴ EM ∥FN ( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com