【題目】定義:若中,其中一個內角是另一個內角的一半,則稱為“半角三角形”.
(1)若為半角三角形,,則其余兩個角的度數(shù)為 .
(2)如圖1,在平行四邊形中,,點在邊上,以為折痕,將向上翻折,點恰好落在邊上的點,若,求證:為半角三角形;
(3)如圖2,以的邊為直徑畫圓,與邊交于,與邊交于,已知的面積是面積的倍.
①求證:.
②若是半角三角形,,直接寫出的取值范圍.
【答案】(1)45°,45°或30°,60°;(2)見解析;(3)①見解析,②0≤BN≤3
【解析】
(1)根據(jù)半角三角形的定義,直接求出其余兩個角的度數(shù),即可;
(2)由平行四邊形的性質得:∠D=108°,由翻折可知:∠EFB=72°,從而得∠EFD=18°,∠DEF=54°,進而即可得到結論;
(3)①如圖2中,連接AN,易得△CMN∽△CBA,從而得=,由銳角三角函數(shù)的定義,即可sin∠CAN=,進而即可得到結論;②由題意得:△ABC是半角三角形,∠B=30°或90°時,BN取得最值,進而即可求解.
(1)∵Rt△ABC為半角三角形,∠A=90°,
∴∠B=∠C=45°,或∠B=60°,∠C=30°或∠B=30°,∠C=60°,
∴其余兩個角的度數(shù)為45°,45°或30°,60°,
故答案為45°,45°或30°,60°;
(2)如圖1中,∵平行四邊形ABCD中,∠C=72°,
∴∠D=108°,
由翻折可知:∠EFB=∠C=72°,
∵,
∴∠EFD=18°,
∴∠DEF=180°-108°-18°=54°,
∴∠DEF=∠D,即△DEF是半角三角形;
(3)①如圖2中,連接AN.
∵AB是直徑,
∴∠ANB=90°,
∵∠C=∠C,∠CMN=∠B,
∴△CMN∽△CBA,
∴()2==,即=,
∵在Rt△ACN中,sin∠CAN==,
∴∠CAN=30°,
∴∠C=60°;
②∵△ABC是半角三角形,∠B=30°或90°時,BN取得最值,
∴0≤BN≤3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形ABCD沿AE,AF折疊后,點B、D恰好重合于點G,測得CF=1,∠CFE=60°,則正方形的邊長是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年4月23日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取名學生,對每人每周用于課外閱讀的平均時間(單位:)進行調查,過程如下:
收集數(shù)據(jù):
整理數(shù)據(jù):
課外閱讀平均時間 | ||||
等級 | ||||
人數(shù) |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) |
請根據(jù)以上提供的信息,解答下列問題:
(1)填空: ; ; ; ;
(2)已知該校學生人,若每人每周用于課外閱讀的平均時間不少于為達標,請估計達標的學生數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,EF經(jīng)過對角線BD的中點O,分別交AD,BC于點E,F
(1)求證:△BOF≌△DOE;
(2)若AB=4cm,AD=5cm,當EF⊥BD時,求四邊形ABFE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖。
(1)這次被調查的同學共有 名;
(2)把條形統(tǒng)計圖補充完整;
(3)校學生會通過數(shù)據(jù)分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐。據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點E,在弦BC上取一點F,使AF=AE,連接AF并延長交⊙O于點D.
(1)求證:∠B=∠CAD;
(2)若CE=2,∠B=30°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經(jīng)過A,D兩點,交AB于點E,交AC于點F
(1)求證:BC是⊙O的切線;
(2)若⊙O半徑是2cm,F是弧AD的中點,求陰影部分的面積(結果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數(shù)為______;
(3)若該中學共有學生1800人,根據(jù)上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數(shù)為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com