【題目】如圖①,直角三角形AOB中,∠AOB=90°,AB平行于x軸,OA=2OB,AB=5,反比例函數(shù)的圖象經(jīng)過點(diǎn)A

1)直接寫出反比例函數(shù)的解析式;

2)如圖②,Px,y)在(1)中的反比例函數(shù)圖象上,其中1x8,連接OP,過O OQOP,且OP=2OQ,連接PQ.設(shè)Q坐標(biāo)為(mn),其中m0,n0,求nm的函數(shù)解析式,并直接寫出自變量m的取值范圍;

3)在(2)的條件下,若Q坐標(biāo)為(m1),求POQ的面積.

【答案】1y=;(2n=(﹣4m<﹣);(35.

【解析】

1)如圖①,

∵∠AOB=90°

OA2+OB2=AB2,

OA=2OB,AB=5,

4OB2+OB2=25,解得OB=,

OA=2

AB平行于x軸,

OCAB,

OCAB=OBOA,即OC==2,

RtAOC中,AC=4,

A點(diǎn)坐標(biāo)為(42),

設(shè)過A點(diǎn)的反比例函數(shù)解析式為y=,

k=4×2=8,

∴反比例函數(shù)解析式為y=

2)分別過P、Qx軸垂線,垂足分別為D、H,如圖②,

OQOP,

∴∠POH+QOD=90°,

∵∠POH+OPH=90°

∴∠QOD=OPH,

RtPOHRtOQD

,

Px,y)在(1)中的反比例函數(shù)圖象上,其中1x8,Q點(diǎn)坐標(biāo)為(m,n),其中m0,n0,OP=2OQ,

PH=y,OH=xOD=m,QD=n

,解得x=2ny=2m,

y=,

2n(﹣2m=8,

mn=2(﹣4m<﹣),

n=(﹣4m<﹣);

3)∵n=1時(shí),m=2,即Q點(diǎn)坐標(biāo)為(﹣2,1),

OQ=

OP=2OQ=,

SPOQ=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作OBC于點(diǎn)D,過點(diǎn)DAC的垂線交AC于點(diǎn)E,交AB的延長線于點(diǎn)F

1)求證:DEO相切;

2)若CDBF,AE3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)體商戶購進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場(chǎng)調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣出160個(gè).若銷售單價(jià)每個(gè)降低2元,則每周可多賣出個(gè).設(shè)銷售價(jià)格每個(gè)降低元,每周銷售量為y個(gè).

(1)求出銷售量個(gè)與降價(jià)元之間的函數(shù)關(guān)系式;

(2)設(shè)商戶每周獲得的利潤為W元,當(dāng)銷售單價(jià)定為多少元時(shí),每周銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,平面內(nèi)的兩條直線點(diǎn)在直線上,點(diǎn)在直線上,過兩點(diǎn)分別作的垂線,垂足分別為,我們把線段叫做線段在直線上的正投影,其長度可記為特別地,線段在直線上的正投影就是線段.請(qǐng)依據(jù)上述定義解決如下問題:

1)如圖①,若,則   

2)如圖②,在矩形中,,,則   

3)如圖③,在矩形中,點(diǎn)邊上(),連接,

①若,求矩形的面積.

②如圖④,點(diǎn)延長線上,連按,若,,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),將正方形ABCD與正方形GECF的頂點(diǎn)C重合,當(dāng)正方形GECF的頂點(diǎn)G在正方形ABCD的對(duì)角線AC上時(shí),的值為______.

如圖(2),將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)a(0°a45°),猜測(cè)AGBE之間的數(shù)量關(guān)系,并說明理由.

如圖(3),將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)a(45°a90°)使得B、E、G三點(diǎn)在一條直線上,此時(shí)tanGAC,AG6,求△BCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.

(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)

(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸、軸分別相交于點(diǎn)A(-1,0)和B0,3),其頂點(diǎn)為D。

1)求這條拋物線的解析式;

2)畫出此拋物線;

3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求ODE的面積;

4)拋物線的對(duì)稱軸上是否存在點(diǎn)P使得PAB的周長最短。若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,

(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,

(3)△A1B1C1與△A2B2C2成軸對(duì)稱圖形嗎?若成軸對(duì)稱圖形,畫出所有的對(duì)稱軸并寫出對(duì)稱軸;

(4)△A1B1C1與△A2B2C2成中心對(duì)稱圖形嗎?若成中心對(duì)稱圖形,寫出所有的對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中解答的填空題,其中答對(duì)的是(

A.,則x=2B.的一個(gè)根是1,則k=2

C.,則x=2D. 的值為0,則x=12

查看答案和解析>>

同步練習(xí)冊(cè)答案