【題目】如圖a是長方形紙帶,∠DEF=24°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖 c中的∠CFE的度數(shù)是(

A.104°B.106°C.108°D.110°

【答案】C

【解析】

根據(jù)長方形紙條的對邊平行,利用平行線的性質和翻折不變性求出∠2=∠EFG,繼而求出∠GFC的度數(shù),再減掉∠GFE即可得∠CFE的度數(shù).

延長AEH,由于紙條是長方形,

EHGF,

∴∠1=∠EFG,

根據(jù)翻折不變性得∠1=∠2,

∴∠2=∠EFG,

又∵∠DEF24°,

∴∠2=∠EFG24°,

FGD24°+24°=48°.

在梯形FCDG中,

GFC180°48°=132°,

根據(jù)翻折不變性,∠CFE=∠GFCGFE132°24°=108°.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的對角線BD上一點,并且AD=DE,過點EEFBDAB于點F.

1)求證:AF=BE,2)若正方形的邊長為1,求BF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某!昂幽鲜h子聽寫大賽初賽”冠軍組成員的年齡分布

年齡/歲

12

13

14

15

人數(shù)

5

15

x

12﹣x

對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是( 。

A. 平均數(shù)、中位數(shù) B. 平均數(shù)、方差 C. 眾數(shù)、中位數(shù) D. 中位數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列敘述中,①所有的正數(shù)都是整數(shù);②|a|一定是正數(shù);③無限小數(shù)一定是無理數(shù);④(2)3沒有平方根;⑤的平方根是±2.其中不正確的個數(shù)有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算aba(1b),下面給出了關于這種運算的四個結論:

2(2)6 abba

ab0,則(aa)+(bb)2ab ab0,則a0

其中正確結論的序號是 (填上你認為所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七年級進行法律知識競賽,共有30道題,答對一道題得4分,不答或答錯一道題扣2分.

(1)小紅同學參加了競賽,成績是96分,請問小紅在競賽中答對了多少題?

(2)小明也參加了競賽,考完后他說:“這次竟賽中我一定能拿到110分.”請問小明有沒有可能拿到110分?試用方程的知識來說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)用配方法解方程:x2﹣2x﹣1=0.

(2)解方程:2x2+3x﹣1=0.

(3)解方程:x2﹣4=3(x+2).

查看答案和解析>>

同步練習冊答案