【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sin B=,AD=1.
(1)求BC的長;
(2)求tan ∠DAE的值.
【答案】(1)BC= 2+1;(2)tan ∠DAE=-.
【解析】試題分析:(1)先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根據(jù)勾股定理求出BD=2,然后根據(jù)BC=BD+DC即可求解;
(2)先由三角形的中線的定義求出CE的值,則DE=CE-CD,然后在Rt△ADE中根據(jù)正切函數(shù)的定義即可求解.
試題解析:(1)在△ABC中,∵AD是BC邊上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,
∴DC=AD=1.
在△ADB中,∵∠ADB=90°,sinB=,AD=1,
∴AB==3,
∴BD=,
∴BC=BD+DC=2+1;
(2)∵AE是BC邊上的中線,
∴CE=BC=+,
∴DE=CE-CD=-,
∴tan∠DAE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列三角形,不一定是等邊三角形的是
A. 有兩個(gè)角等于60°的三角形 B. 有一個(gè)外角等于120°的等腰三角形
C. 三個(gè)角都相等的三角形 D. 邊上的高也是這邊的中線的三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線(a、b、c是常數(shù), )與直線都經(jīng)過軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線上,則稱此直線與該拋物線L具有“一帶一路”關(guān)系,此時(shí),直線叫做拋物線L的“帶線”,拋物線L叫做直線的“路線”.
(1)若直線與拋物線具有“一帶一路”關(guān)系,求m、n的值.
(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線” 的解析式為,求此路的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤當(dāng)x≠2時(shí),總有4a+2b>ax2+bx;其中正確的有 (填寫正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·西寧中考)如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+4x+n經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B.
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)若P是x軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列現(xiàn)象中屬于旋轉(zhuǎn)的是( )
A. 摩托車在急剎車時(shí)向前滑動(dòng)
B. 擰開水龍頭
C. 雪橇在雪地里滑動(dòng)
D. 電梯的上升與下降
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為測山高,在點(diǎn)A處測得山頂D的仰角為31°,從點(diǎn)A向山方向前進(jìn)140米到達(dá)點(diǎn)B,在B處測得山頂D的仰角為62°(如圖).
(1)在所給的圖②中尺規(guī)作圖:過點(diǎn)D作DC⊥AB,交AB的延長線于點(diǎn)C;
(2)山高DC是多少(結(jié)果取整數(shù))?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com