【題目】如圖,在RtABC中,CD,CE分別是斜邊AB上的高,中線,BCa,ACb

1)若a3,b4,求DE的長;

2)直接寫出:CD   (用含ab的代數(shù)式表示);

3)若b3,tanDCE=,求a的值.

【答案】(1);(2);(3).

【解析】

1)求出BE,BD即可解決問題.

2)利用勾股定理,面積法求高CD即可.

3)根據(jù)CD3DE,構(gòu)建方程即可解決問題.

解:(1)在RtABC中,∵∠ACB90°,a3,b4,

CDCE是斜邊AB上的高,中線,

∴∠BDC90°,

∴在RtBCD中,

2)在RtABC中,∵∠ACB90°,BCa,ACb,

故答案為:

3)在RtBCD中,,

,

,

CD3DE,即

b3,

2a9a2,即a2+2a90

由求根公式得(負值舍去),

即所求a的值是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)y=2x2+4x-3,下列說法正確的是( )

A.圖象與軸的交點坐標為

B.圖象的對稱軸在軸的右側(cè)

C.時,的值隨值的增大而減小

D.的最小值為-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點內(nèi)的一點,過點分別作直線平行于的各邊,所形成的三個小三角形,(圖中陰影部分)的面積分別是4、949,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,BA=BC=3,將△ABC繞點C逆時針旋轉(zhuǎn)60°得△MNC,連結(jié)BM ,求BM 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yax2bxc的圖象如圖所示,那么關(guān)于x的一元二次方程ax2bxc30的根的情況是( )

A. 有兩個不相等的實數(shù)根

B. 有兩個異號的實數(shù)根

C. 有兩個相等的實數(shù)根

D. 沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(點B在點A的左側(cè)),與y軸交于點C

1)求點A,B,C的坐標;

2)求證:ABC為直角三角形;

3)如圖,動點E,F同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當點F停止運動時,點E隨之停止運動.設(shè)運動時間為t秒,連結(jié)EF,將AEF沿EF翻折,使點A落在點D處,得到DEF.當點FAC上時,是否存在某一時刻t,使得DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案