【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交與A4,-2),B-2n)兩點(diǎn),與軸交與點(diǎn)C

1)求,n的值;

2)請直接寫出不等式的解集;

3)點(diǎn)A關(guān)于軸對稱得到點(diǎn)A,連接ABAC,求△ABC的面積.

【答案】1,;(2;(38

【解析】

1)將A點(diǎn)坐標(biāo)代入即可求得的值,再根據(jù)求得的解析式即可求得n的值;

2)用函數(shù)的觀察,反比例函數(shù)圖象在一次函數(shù)圖象上面部分的x取值范圍,即為不等式的解集;
3)求出對稱點(diǎn)坐標(biāo),再根據(jù)即可求得面積.

解:(1)將A4,-2)代入,得k2=-8
,
將(-2n)代入n=4,
k2=-8,n=4

2)根據(jù)函數(shù)圖象可知的解集為:-2x0x4;

3)將A4-2),B-24)代入y=k1x+b,得k1=-1b=2
∴一次函數(shù)的關(guān)系式為y=-x+2
x軸交于點(diǎn)C20),


∴圖象沿x軸翻折后,得A′4,2),

∴△A'BC的面積為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與軸交于點(diǎn)C,與軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).

1)求該拋物線的函數(shù)關(guān)系式;

2)點(diǎn)P是該拋物線上一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)PA不重合),過點(diǎn)PPD軸,交直線AC于點(diǎn)D;作PEx軸,交直線AC于點(diǎn)E,以PD,PE為邊的矩形PEFD,問矩形PEFD周長是否存在最大值?若存在,求出此時(shí)P點(diǎn)的坐標(biāo)及最大值;若不存在,請說明理由;

3)在問題(2)的條件下,P點(diǎn)滿足∠DAP=90°,且點(diǎn)E軸上,點(diǎn)F在拋物線上,問是否存在以APE、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx5的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A坐標(biāo)為(1,0),一次函數(shù)yx+k的圖象經(jīng)過點(diǎn)B、C

1)試求二次函數(shù)及一次函數(shù)的解析式;

2)如圖1,點(diǎn)D(2,0)x軸上一點(diǎn),P為拋物線上的動(dòng)點(diǎn),過點(diǎn)P、D作直線PD交線段CB于點(diǎn)Q,連接PC、DC,若SCPD3SCQD,求點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)E為拋物線位于直線BC下方圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作直線EGx軸于點(diǎn)G,交直線BC于點(diǎn)F,當(dāng)EF+CF的值最大時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的一半,則稱這樣的方程為“半等分根方程”.

1)①方程 半等分根方程(填“是”或“不是”);

②若是半等分根方程,則代數(shù)式 ;

2)若點(diǎn)在反比例函數(shù)的圖象上,則關(guān)于的方程是半等分根方程嗎?并說明理由;

3)如果方程是半等分根方程,且相異兩點(diǎn),都在拋物線上,試說明方程的一個(gè)根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共100間,這三類養(yǎng)老專用房間分別為單人間(1個(gè)養(yǎng)老床位),雙人間(2個(gè)養(yǎng)老床位),三人間(3個(gè)養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在10至30之間(包括10和30),且雙人間的房間數(shù)是單人間的2倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.

(1)根據(jù)題意,填寫下表:

單人間的房間數(shù)

10

30

雙人間的房間數(shù)

_________

60

三人間的房間數(shù)

70

_________

_________

養(yǎng)老床位數(shù)

260

_________

_________

(2)若該養(yǎng)老中心建成后可提供養(yǎng)老床位200個(gè),求的值;

(3)求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個(gè)?最少提供養(yǎng)老床位多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,分別是邊上的點(diǎn),且滿足,連接,過點(diǎn)B,垂足為點(diǎn)G,連接DG,則下列說法不正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)草莓采摘園為吸引顧客,在草莓銷售價(jià)格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購買門票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門票,采摘草莓超過一定數(shù)量后,超過的部分打折銷售.活動(dòng)期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費(fèi)用y1元,若在乙園采摘需總費(fèi)用y2元, y1,y2x之間的函數(shù)圖象如圖所示,則下列說法中錯(cuò)誤的是(

A.甲園的門票費(fèi)用是60

B.草莓優(yōu)惠前的銷售價(jià)格是40/kg

C.乙園超過5 kg后,超過的部分價(jià)格優(yōu)惠是打五折

D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費(fèi)用相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形中,的圓心從點(diǎn)開始沿折線的速度向點(diǎn)運(yùn)動(dòng),的圓心從點(diǎn)開始沿邊以的速度向點(diǎn)運(yùn)動(dòng),半徑為的半徑為,若分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為

1)請求出與腰相切時(shí)的值;

2)在范圍內(nèi),當(dāng)為何值時(shí),外切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點(diǎn)A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。

A. π﹣2 B. π﹣ C. π﹣2 D. π﹣

查看答案和解析>>

同步練習(xí)冊答案