如圖所示,點B坐標為(18,0),點A坐標為(18,6),動點P從點O開始沿OB以每秒3個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒1個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t=______時,以點P、B、Q為頂點的三角形與△AOB相似;
(2)若設四邊形OPQA的面積為y,試寫出y與t的函數(shù)關系式,并求出t取何值時,四邊形OPQA的面積最。
(3)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù),請求出點E的坐標;若不存在,請說明理由.

【答案】分析:(1)討論:當∠BPQ=∠BOA,即PQ∥OA,由相似三角形:Rt△QPB∽Rt△AOB,的對應邊成比例求得t=3;當∠BPQ=∠A,則Rt△BPQ∽Rt△BAO,由相似三角形的對應邊成比例知=,即=,即可得到t=5.4;
(2)利用y=S△OAB-S△BPQ=×18×6-×(18-3t)t,然后利用配方法求得該二次函數(shù)的最值,即求出t取何值時,四邊形OPQA的面積最小;
(3)當點E在y軸正半軸時,利用以B、Q、E、P為頂點的四邊形的面積=梯形BQEO的面積-△OPE的面積,用t與m表示出來為(t+m)×18-×3t×m=(9-m)t+9m,當t的系數(shù)為0時即可得到m的值;
當點E在y軸負半軸時,S=S△EPB+S△PBQ=(18-3t)(-m)-(18-3t)t=-t2+mt+9t-9m.此時不存在m的值,使S的值為常數(shù).
解答:解:∵點B坐標為(18,0),點A坐標為(18,6),
∴BO=18,AB=6,AB⊥0B.
(1)當∠BPQ=∠BOA,即PQ∥OA,Rt△QPB∽Rt△AOB,
=,即=,
解得t=3;
當∠BPQ=∠A,則Rt△BPQ∽Rt△BAO,
=,即=,
∴t=5.4.
所以當t=3秒或5.4秒時,以點P、Q、B為頂點的三角形與△AOB相似.

(2)y=S△OAB-S△BPQ=×18×6-×(18-3t)t=(t-3)2+,即y=(t-3)2+
則當t=3,四邊形OPQA的面積最小;

(3)存在.理由如下:
設以B、Q、E、P為頂點的四邊形面積是S,E(0,m).
①如圖1,當E在y軸的正半軸上時,則
S=S梯形BQEO-S△OPE=(t+m)×18-×3t×m=(9-m)t+9m.
故當9-m=0,即m=6時,S=54是一個定值;
②如圖2,當點E在y軸的正半軸上時,則S=S△EPB+S△PBQ=(18-3t)(-m)-(18-3t)t=-t2+mt+9t-9m.
此時不存在m的值,使S的值為常數(shù).
綜上所述,點E的坐標(0,6)使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù).
故答案為:3或5.4.
點評:本題考查了三角形相似的判定與性質:兩組對應角相等的三角形相似;相似三角形的對應邊的比相等.也考查了分類討論思想的運用以及三角形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖所示,點A坐標為(0,3),OA半徑為1,點B在x軸上.
(1)若點B坐標為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關系;
(2)若⊙B過M(-2,0)且與⊙A相切,求B點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,點B坐標為(6,0),點A坐標為(6,12),動點P從點O開始沿OB以每秒1個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒2個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間精英家教網(0<t≤6),那么,
(1)當t為何值時,四邊形OPQA是梯形,此時梯形OPQA的面積是多少?
(2)當t為何值時,以點P、B、Q為頂點的三角形與△AOB相似?
(3)若設四邊形OPQA的面積為y,試寫出y與t的函數(shù)關系式,并求出t取何值時,四邊形OPQA的面積最?
(4)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù)?若存在請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吳江市模擬)如圖所示,點B坐標為(18,0),點A坐標為(18,6),動點P從點O開始沿OB以每秒3個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒1個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t=
3或5.4
3或5.4
時,以點P、B、Q為頂點的三角形與△AOB相似;
(2)若設四邊形OPQA的面積為y,試寫出y與t的函數(shù)關系式,并求出t取何值時,四邊形OPQA的面積最?
(3)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù),請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(10分)

如圖所示,點A坐標為(0,3),OA半徑為1,點B在x軸上.

⑴若點B坐標為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關系;

⑵若⊙B過M(-2,0)且與⊙A相切,求B點坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省泰興市初三上學期階段測試數(shù)學卷 題型:解答題

(10分)

如圖所示,點A坐標為(0,3),OA半徑為1,點B在x軸上.

⑴若點B坐標為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關系;

⑵若⊙B過M(-2,0)且與⊙A相切,求B點坐標.

 

查看答案和解析>>

同步練習冊答案