【題目】已知京潤(rùn)生物制品廠生產(chǎn)某種產(chǎn)品的年產(chǎn)量不超過(guò)800噸,生產(chǎn)該產(chǎn)品每噸所需相關(guān)費(fèi)為10萬(wàn)元,且生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完.產(chǎn)品每噸售價(jià)y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系如圖所示
(1)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn)?(毛利潤(rùn)=銷售額﹣相關(guān)費(fèi)用)
(2)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時(shí),該廠能獲得當(dāng)年銷售的是大毛利潤(rùn)?最大毛利潤(rùn)多少萬(wàn)元.
【答案】(1)當(dāng)該產(chǎn)品年產(chǎn)量為500噸時(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn);(2)當(dāng)該產(chǎn)品年產(chǎn)量為800噸時(shí),該廠能獲得當(dāng)年銷售的最大毛利潤(rùn),最大毛利潤(rùn)是9600萬(wàn)元.
【解析】
(1)根據(jù)題意可以求得產(chǎn)品每噸售價(jià)y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式,從而可以列出相應(yīng)的方程,本題得以解決;
(2)根據(jù)題意和(1)中的函數(shù)關(guān)系式,可以求得當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時(shí),該廠能獲得當(dāng)年銷售的最大毛利潤(rùn),最大毛利潤(rùn)多少萬(wàn)元.
(1)設(shè)產(chǎn)品每噸售價(jià)y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系是y=ax+b,
則,得,
∴y=﹣0.01x+30,
(﹣0.01x+30)x﹣10x=7500,
解得,x1=500,x2=1500(舍去),
答:當(dāng)該產(chǎn)品年產(chǎn)量為500噸時(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn);
(2)設(shè)該廠能獲得當(dāng)年銷售的毛利潤(rùn)為w萬(wàn)元,
w=(﹣0.01x+30)x﹣10x=﹣0.01(x﹣1000)2+10000,
∵0≤x≤800,
∴當(dāng)x=800時(shí),w取得最大值,此時(shí)w=9600,
答:當(dāng)該產(chǎn)品年產(chǎn)量為800噸時(shí),該廠能獲得當(dāng)年銷售的最大毛利潤(rùn),最大毛利潤(rùn)是9600萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BC及BC的延長(zhǎng)線于點(diǎn)P、Q.
(1)求∠PAQ的大;
(2)若點(diǎn)M為PQ的中點(diǎn),求證:PM2=CM·BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,△OAB在平面直角坐標(biāo)系中的位置如圖所示,解答問(wèn)題:
(1)請(qǐng)按要求對(duì)△OAB作變換:以點(diǎn)O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進(jìn)行放大得到△OA′B′.
(2)寫出點(diǎn)A′的坐標(biāo);
(3)求△OA′B'的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
(1)求直線的函數(shù)解析式;
(2)如圖2,點(diǎn)在線段(不包括,兩點(diǎn))上,連接與軸交于點(diǎn),連接.、的垂直平分線交于點(diǎn),連接并延長(zhǎng)到點(diǎn),使,作軸于,連結(jié).求證:;
(3)在(2)的條件下,當(dāng)的邊時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,其中,直線l是它的對(duì)稱軸,把該拋物線沿著x軸水平向左平移個(gè)單位長(zhǎng)度后,與x軸交于點(diǎn)A、B,在B的左側(cè),如圖1,P為平移后的拋物線上位于第一象限內(nèi)的一點(diǎn)
點(diǎn)A的坐標(biāo)為______;
若點(diǎn)P的橫坐標(biāo)為,求出當(dāng)m為何值時(shí)的面積最大,并求出這個(gè)最大值;
如圖2,AP交l于點(diǎn)D,當(dāng)D為AP的中點(diǎn)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過(guò)點(diǎn)A,D的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OF交AD于點(diǎn)G.
(1)求證:BC是⊙O的切線;
(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);
(3)若BE=8,sinB=,求DG的長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請(qǐng)你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到,連接DE.
(1)如圖1,求證:是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com