年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測叢書 八年級數(shù)學(xué) 下�。ńK版課標(biāo)本) 江蘇版 題型:013
反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=
,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點(diǎn)作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:
例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大�。�
解答:=|k|
=|k|
故=
例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過三點(diǎn)分別向x軸引垂線,交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=
|k|=
,
=
|k|=
=
|k|=
S1=S2=S3,故選A.
例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數(shù)的解析式為y=.
根據(jù)是述意義,請你解答下題:
如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關(guān)系不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
探索研究
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個常數(shù),這個常數(shù)是
;根據(jù)此規(guī)律,如果(
為正整數(shù))表示這個數(shù)列的第
項(xiàng),那么
,
;
(2)如果欲求的值,可令
……………………………………………………①
將①式兩邊同乘以3,得
………………………………………………………②
由②減去①式,得
.
(3)用由特殊到一般的方法知:若數(shù)列,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為
,則
(用含
的代數(shù)式表示),如果這個常數(shù)
,那么
(用含
的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市工業(yè)園區(qū)八年級第二學(xué)期數(shù)學(xué)卷 題型:單選題
(2010•黔南州)如果,則
=( )
A.![]() | B.1 | C.![]() | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆廣東汕頭友聯(lián)中學(xué)九年級上學(xué)期第一階段考試數(shù)學(xué)試卷(帶解析) 題型:單選題
如果,則( �。�
A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年廣東汕頭九年級上學(xué)期第一階段考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如果,則( �。�
A、>
B、
≥
C、
<
D、
≤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com