【題目】中,,把AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn)得到AB于點(diǎn)E,若,則的面積是

A. 3 B. 5 C. 11 D. 6

【答案】D

【解析】分析:在RtABC由勾股定理求得AB=10,由旋轉(zhuǎn)的性質(zhì)可知AD=AD,設(shè)AD=AD=BE=x,DE=102x,根據(jù)旋轉(zhuǎn)90°可證△ADE∽△ACB,利用相似比求x,再求△ADE的面積.

詳解RtABCAB==10,由旋轉(zhuǎn)的性質(zhì),設(shè)AD=AD=BE=x,DE=102x∵△ABCAB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△ABC′,∴∠A′=A,ADE=C=90°,∴△ADE∽△ACB==,解得x=3,SADE=DE×AD=×102×3×3=6故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)DE上有一點(diǎn)O,過(guò)點(diǎn)O在直線(xiàn)DE上方作射線(xiàn)OC,∠COE140°,將一直角三角板AOB的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線(xiàn)OD上,另一邊OB在直線(xiàn)DE上方,將直角三角板繞著點(diǎn)O按每秒10°的速度逆時(shí)針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時(shí)間為t秒.

1)當(dāng)直角三角板旋轉(zhuǎn)到如圖2的位置時(shí),OA恰好平分∠COD,求此時(shí)∠BOC的度數(shù);

2)若射線(xiàn)OC的位置保持不變,在旋轉(zhuǎn)過(guò)程中,是否存在某個(gè)時(shí)刻,使得射線(xiàn)OA、OC、OD中的某一條射線(xiàn)是另兩條射線(xiàn)所成夾角的角平分線(xiàn)?若存在,請(qǐng)求出t的取值,若不存在,請(qǐng)說(shuō)明理由;

3)若在三角板開(kāi)始轉(zhuǎn)動(dòng)的同時(shí),射線(xiàn)OC也繞O點(diǎn)以每秒15°的速度逆時(shí)針旋轉(zhuǎn)一周,從旋轉(zhuǎn)開(kāi)始多長(zhǎng)時(shí)間,射線(xiàn)OC平分∠BOD.直接寫(xiě)出t的值.(本題中的角均為大于0°且小于180°的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,B=30°,以A為圓心適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于點(diǎn)M、N,分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧交于點(diǎn)P,作射線(xiàn)APBC于點(diǎn)D,再作射線(xiàn)DEAB于點(diǎn)E,則下列結(jié)論錯(cuò)誤的是(  )

A. ADB=120° B. SADC:SABC=1:3

C. CD=2,則BD=4 D. DE垂直平分AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】jiong)是近時(shí)期網(wǎng)絡(luò)流行語(yǔ),像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為20的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為x、y,剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)也分別為x、y

1)用含有x、y的代數(shù)式表示右圖中的面積;

2)當(dāng)時(shí),求此時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情景】利用三角形的面積相等來(lái)求解的方法是一種常見(jiàn)的等積法,此方法是我們解決幾何問(wèn)題的途徑之一.

例如:張老師給小聰提出這樣一個(gè)問(wèn)題:

如圖1,在ABC中,AB=3,AD=6,問(wèn)ABC的高ADCE的比是多少?

小聰?shù)挠?jì)算思路是:

根據(jù)題意得:SABC=BCAD=ABCE.

從而得2AD=CE,

請(qǐng)運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題:

(1)【類(lèi)比探究】

如圖2,在ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,

求證:BO平分角AOC.

(2)【探究延伸】

如圖3,已知直線(xiàn)mn,點(diǎn)A、C是直線(xiàn)m上兩點(diǎn),點(diǎn)B、D是直線(xiàn)n上兩點(diǎn),點(diǎn)P是線(xiàn)段CD中點(diǎn),且∠APB=90°,兩平行線(xiàn)m、n間的距離為4.求證:PAPB=2AB.

(3)【遷移應(yīng)用】

如圖4,EAB邊上一點(diǎn),EDAD,CECB,垂足分別為D,C,DAB=B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求DEMCEN的周長(zhǎng)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形OABC中,,點(diǎn)的坐標(biāo)分別為,點(diǎn)DAB上一點(diǎn),且,雙曲線(xiàn)經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E

求雙曲線(xiàn)的解析式;

求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩塊直角三角尺的頂點(diǎn)疊放在一起.

1)若∠DCE25°,求∠ACB的度數(shù).

2)若∠ACB140°,求∠DCE的度數(shù).

3)猜想∠ACB與∠DCE的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題.

(1)這次統(tǒng)計(jì)共抽查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為________;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校共有2500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信”“QQ”“電話(huà)三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,P為△ABC所在平面上一點(diǎn),且∠APBBPCCPA120°,則點(diǎn)P叫作△ABC的費(fèi)馬點(diǎn).

(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC60°.

①求證: ABP∽△BCP;

②若PA3PC4,求PB的長(zhǎng);

(2)如圖②,已知銳角△ABC,分別以ABAC為邊向外作正△ABE和正△ACD,CEBD相交于點(diǎn)P,連接AP.

①求∠CPD的度數(shù);

②求證:點(diǎn)P為△ABC的費(fèi)馬點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案