【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】分析:(1)連結(jié)OC,如圖,根據(jù)圓周角定理得∠POC=2∠CAB,由于∠POE=2∠CAB,則∠POC=∠POE,根據(jù)等腰三角形的性質(zhì)即可得到CE⊥AB;
(2)由CE⊥AB得∠P+∠PCE=90°,加上∠E=∠OCD,∠P=∠E,所以∠OCD+∠PCE=90°,則OC⊥PC,然后根據(jù)切線的判定定理即可得到結(jié)論.
(3)設⊙O的半徑為r,OD=x,則BD=2x,r=3x,易證得Rt△OCD∽Rt△OPC,根據(jù)相似三角形的性質(zhì)得OC2=ODOP,即(3x)2=x(3x+9),解出x,即可得圓的半徑;同理可得PC2=PDPO=(PB+BD)(PB+OB)=162,可計算出PC,然后在Rt△OCP中,根據(jù)正切的定義即可得到tan∠P的值.
詳解:(1)證明:連接OC,
∴∠COB=2∠CAB,
又∠POE=2∠CAB.
∴∠COD=∠EOD,
又∵OC=OE,
∴∠ODC=∠ODE=90°,
即CE⊥AB;
(2)證明:∵CE⊥AB,∠P=∠E,
∴∠P+∠PCD=∠E+∠PCD=90°,
又∠OCD=∠E,
∴∠OCD+∠PCD=∠PCO=90°,
∴PC是⊙O的切線;
(3)解:設⊙O的半徑為r,OD=x,則BD=2x,r=3x,
∵CD⊥OP,OC⊥PC,
∴Rt△OCD∽Rt△OPC,
∴OC2=ODOP,即(3x)2=x(3x+9),
解之得x=,
∴⊙O的半徑r=,
同理可得PC2=PDPO=(PB+BD)(PB+OB)=162,
∴PC=9,
在Rt△OCP中,tan∠P=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的解析式;
(2)若點C在直線AB上,且,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)-(+3.7)+(+)-(-1.7) (2)(-72)×2×(-)÷(-3)
(3)(--+)×(-24) (4)-32×(-2)+42÷(-2)3-∣-22∣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法,其中正確的個數(shù)是( )
①整數(shù)和分數(shù)統(tǒng)稱為有理數(shù);②絕對值是它本身的數(shù)只有0;③兩數(shù)之和一定大于每個加數(shù);④如果兩個數(shù)積為0,那么至少有一個因數(shù)為0;⑤0是最小的有理數(shù),;⑥數(shù)軸上表示互為相反數(shù)的點位于原點的兩側(cè);⑦幾個有理數(shù)相乘,如果負因數(shù)的個數(shù)是奇數(shù),那么積為負數(shù),
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的頂點A1、A2、A3、…、An均在直線y=kx+b上,頂點C1、C2、C3、…、Cn在x軸上,若點B1的坐標為(1,1),點B2的坐標為(3,2),那么點A4的坐標為 ,點An的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,AB=2cm,AC=5cm,SABCD=8cm2,E點從B點出發(fā),以1cm每秒的速度,在AB延長線上向右運動,同時,點F從D點出發(fā),以同樣的速度在CD延長線上向左運動,運動時間為t秒.
(1)在運動過程中,四邊形AECF的形狀是____;
(2)t=____時,四邊形AECF是矩形;
(3)求當t等于多少時,四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,且OB=OC,下列結(jié)論:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正確的個數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將一個圓依次二等分、三等分、四等分、五等分…,并按圖中規(guī)律在半徑上擺放黑色棋子,則第一幅圖中有5個棋子,第二幅圖中有10個棋子,第三幅圖中有17個棋子,第四幅圖中有26個棋子,依此規(guī)律,則第6幅圖中所含棋子數(shù)目為( )
A.51 B.50 C.49 D.48
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com