精英家教網 > 初中數學 > 題目詳情

【題目】已知:在△ABC中,ACBC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

(1)如圖1,BF垂直CE于點F,交CD于點G,證明:AECG;

(2)如圖2,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點M,則圖中與BE相等的線段是 ,并說明理由.

【答案】見解析.

【解析】試題分析:(1)首先根據點DAB中點,∠ACB=90°,可得出∠ACD=∠BCD=45°,判斷出△AEC≌△CGB,即可得出AE=CG,(2)根據垂直的定義得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根據AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,進而證明出BE=CM

試題解析:(1)證明:DAB中點,AC=BC∠ACB=90°

∴CD⊥AB,∠ACD=∠BCD=45°

∴∠CAD=∠CBD=45°

∴∠CAE=∠BCG BF⊥CE

∴∠CBG+∠BCF=90°∠ACE+∠BCF=90°

∴∠ACE=∠CBG∴△AEC≌△CGB

∴AE=CG

2BE=CM

證明:∵CH⊥HM,CD⊥ED ∴∠CMA+∠MCH=90° ∠BEC+∠MCH=90°

∴∠CMA=∠BEC

AC=BC,∠ACM=∠CBE=45°

∴△BCE≌△CAM

∴BE=CM

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:197×203__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個等腰三角形的一個角為30,則這個三角形的頂角為( )

A.120B.30C.12030D.90

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,矩形OABC的長OA=, 寬OC=1,將AOC沿AC翻折得APC.

(1)求∠PCB的度數;

(2)若P,A兩點在拋物線y=x2+bx+c上,求bc的值,并說明點C在此拋物線上;

(3)題(2)中的拋物線與矩形OABCCB相交于點D,與x軸相交于另外一點E,若點Mx軸上的點,Ny軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】P在第四象限,到x軸的距離為3,到y軸的距離為2,則P點坐標為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】因式分解:3a2﹣3b2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】10×10的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的內接格點三角形.以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數是( 。

A. 16 B. 15 C. 14 D. 13

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八年級一班與二班的同學在一次數學測驗中的成績統(tǒng)計情況如下表:

班級

參加人數

中位數

平均數

方差

49

84

80

186

49

85

80

161

某同學分析后得到如下結論:

①一班與二班學生平均成績相同;

②二班優(yōu)生人數多于一班(優(yōu)生線85分)

③一班學生的成績相對穩(wěn)定。其中正確的是(

A. ①② B. ①③ C. ①②③ D. ②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數y=ax+b與二次函數y=ax2+bx+c在同一坐標系中的圖像可能是 ( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案