(2012•普陀區(qū)一模)如圖所示,A,B兩地隔河相望,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達B地,現(xiàn)在直線AB(與橋DC平行)上建了新橋EF,可沿直線AB從A地直達B地,已知BC=1000m,∠A=45°,∠B=37°.問:現(xiàn)在從A地到達B地可比原來少走多少路程?
(結果精確到1m.參考數(shù)據(jù):
2
≈1.41
,sin37°≈0.60,cos37°≈0.80)
分析:少走路程就是(AD+CD+BC-AB)的長.過點D作DH⊥AB于H,DG∥CB交AB于G.將梯形問題轉化為三角形中求解.
解答:解:如圖,過點D作DH⊥AB于H,DG∥CB交AB于G.
∵DC∥AB,
∴四邊形DCBG為平行四邊形.
∴DC=GB,GD=BC=1000.
∴兩條路線路程之差為AD+DG-AG.
在Rt△DGH中,
DH=DG•sin37°≈1000×0.60=600m,
GH=DG•cos37°≈1000×0.80≈800m.
在Rt△ADH中,
AD=
2
DH≈1.41×600≈846m.
AH=DH≈600m.
∴AD+DG-AG=(846+1000)-(600+800)≈446(m).
即現(xiàn)在從A地到B地可比原來少走約446m.
點評:本題考查了解直角三角形的實際應用,將梯形中的問題轉化為三角形問題是解決梯形問題的常用方法,常作的輔助線有平移腰、平移對角線、作高等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)如圖,由5個同樣大小的正方形合成一個矩形,那么∠ABD+∠ADB的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)計算:tan30°×cos60°=
3
6
3
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)小王在樓下點A處看到樓上點B處的小明的仰角是35°,那么點B處得小明看點A處的小王的俯角等于
35°
35°
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)如圖是一張直角三角形的紙片,直角邊AC=6cm,sinB=
3
5
,現(xiàn)將△ABC折疊,使點B與點A重合,折痕為DE,那么DE的長等于
15
4
cm
15
4
cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)如圖,點A,B是⊙O上兩點,AB=10,點P是⊙O上的動點(P與A,B不重合),連接AP,BP,過點O分別作OE⊥AP,OF⊥BP,點E、F分別是垂足.
(1)求線段EF的長;
(2)點O到AB的距離為2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案