【題目】在矩形ABCD中,AB=6,BC=12,點(diǎn)E在邊BC上,且BE=2CE,將矩形沿過(guò)點(diǎn)E的直線折疊,點(diǎn)C,D的對(duì)應(yīng)點(diǎn)分別為C′,D′,折痕與邊AD交于點(diǎn)F,當(dāng)點(diǎn)B,C′,D′恰好在同一直線上時(shí),AF的長(zhǎng)為_____.
【答案】8+或8﹣.
【解析】分析: 由折疊的性質(zhì)得,∠EC′D′=∠C=90°,C′E=CE,在Rt△BC′E中,由=2,得到∠C′BE=30°,①當(dāng)點(diǎn)C′在BC的上方時(shí),過(guò)E作EG⊥AD于G,延長(zhǎng)EC′交AD于H,則四邊形ABEG是矩形根據(jù)等邊三角形的性質(zhì)和矩形的性質(zhì),即可得到AF的長(zhǎng);②當(dāng)點(diǎn)C′在BC的下方時(shí),過(guò)F作FG⊥AD于G,D′F交BE于H,同①可得四邊形ABGF是矩形根據(jù)矩形的性質(zhì)和等邊三角形的性質(zhì),即可得到AF的長(zhǎng).
詳解: 由折疊的性質(zhì)得,∠EC′D′=∠C=90°,C′E=CE,
∵點(diǎn)B、C′、D′在同一直線上,
∴∠BC′E=90°,
∵BC=12,BE=2CE,
∴BE=8,C′E=CE=4,
在Rt△BC′E中,=2,
∴∠C′BE=30°,
①當(dāng)點(diǎn)C′在BC的上方時(shí),
如圖1,過(guò)E作EG⊥AD于G,延長(zhǎng)EC′交AD于H,則四邊形ABEG是矩形,
∴EG=AB=6,AG=BE=8,
∵∠C′BE=30°,∠BC′E=90°,
∴∠BEC′=60°,
由折疊的性質(zhì)得,∠C′EF=′CEF,
∴∠C′EF=∠CEF=60°,
∵AD∥BC
∴∠HFE=∠CEF=60°,
∴△EFH是等邊三角形,
∴在Rt△EFG中,EG=6,
∴GF=2,
∴AF═8+2;
②當(dāng)點(diǎn)C′在BC的下方時(shí),
如圖2,過(guò)F作FG⊥AD于G,D′F交BE于H,
同①可得,四邊形ABGF是矩形,△EFH是等邊三角形,
∴AF=BG,F(xiàn)G=AB=6,∠FEH=60°,
在Rt△EFG中,GE=2,
∵BE=8,
∴BG=82,
∴AF=82,
綜上所述,AF的長(zhǎng)是8+2或82.
故答案為:8+2或82.
點(diǎn)睛: 本題考查了翻折變換折疊問(wèn)題,正確的作出圖形是解題的關(guān)鍵.折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE∥BA交AC于點(diǎn)E,DF∥CA交AB于點(diǎn)F,已知CD=3.
(1)求AD的長(zhǎng);
(2)求四邊形AEDF的周長(zhǎng).(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,完成下列說(shuō)理過(guò)程
如圖,點(diǎn)A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,
所以∠COD=∠AOC.
因?yàn)?/span>OE是∠BOC的平分線,
所以∠COE= .
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知
∠BOE=∠COE= ﹣∠COD= °.
所以∠AOE= ﹣∠BOE= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)將組織七年級(jí)學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜.
(1)兩同學(xué)向公司經(jīng)理了解租車的價(jià)格,公司經(jīng)理對(duì)他們說(shuō):“公司有45座和60座兩種型號(hào)的客車可供租用,60座的客車每輛每天的租金比45座的貴100元.”王老師說(shuō):“我們學(xué)校八年級(jí)昨天在這個(gè)公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎”甲、乙兩同學(xué)想了一下,都說(shuō)知道了價(jià)格.
聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?
(2)公司經(jīng)理問(wèn):“你們準(zhǔn)備怎樣租車”,甲同學(xué)說(shuō):“我的方案是只租用45座的客車,可是會(huì)有一輛客車空出30個(gè)座位”;乙同學(xué)說(shuō)“我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車”,王老師在﹣旁聽(tīng)了他們的談話說(shuō):“從經(jīng)濟(jì)角度考慮,還有別的方案嗎”?如果是你,你該如何設(shè)計(jì)租車方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知C,D為線段AB上的兩點(diǎn),點(diǎn)M,N分別為AC與BD的中點(diǎn),若AB=13,CD=5,求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚島的距離(≈1.414,結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過(guò)作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過(guò)點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,AB=CD,點(diǎn)E、F在BC上,且BF=CE.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com