【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)AD⊥AG,證明見(jiàn)解析.
【解析】試題分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定義得∠HFB=∠HEC,由得對(duì)頂角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD與三角形ACG全等,由全等三角形的對(duì)應(yīng)邊相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代換可得出∠AED=∠GAD=90°,即AG與AD垂直.
試題解析:(1)∵BE⊥AC,CF⊥AB,
∴∠HFB=∠HEC=90°,
又∵∠BHF=∠CHE,
∴∠ABD=∠ACG,
在△ABD和△GCA中
,
∴△ABD≌△GCA(SAS),
∴AD=GA(全等三角形的對(duì)應(yīng)邊相等);
(2)位置關(guān)系是AD⊥GA,
理由為:∵△ABD≌△GCA,
∴∠ADB=∠GAC,
又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,
∴∠AED=∠GAD=90°,
∴AD⊥GA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹(shù),成活98%.現(xiàn)已掛果,經(jīng)濟(jì)效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹(shù)上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計(jì)圖所示.
(1)分別計(jì)算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過(guò)計(jì)算說(shuō)明,哪個(gè)山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=x+m和拋物線y=x2+bx+c都經(jīng)過(guò)點(diǎn)A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)求方程x2+bx+c=x+m的解.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果正多邊形的一個(gè)內(nèi)角是140°,則這個(gè)多邊形是( )
A. 正十邊形 B. 正九邊形 C. 正八邊形 D. 正七邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠B=30°,O為AB邊中點(diǎn),將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°至△EDA位置,連接CD.
(1)求證:OD⊥BC;
(2)求證:四邊形AODC為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要從甲、乙兩名運(yùn)動(dòng)員中選出一名參加“2016里約奧運(yùn)會(huì)”100m比賽,對(duì)這兩名運(yùn)動(dòng)員進(jìn)行了10次測(cè)試,經(jīng)過(guò)數(shù)據(jù)分析,甲、乙兩名運(yùn)動(dòng)員的平均成績(jī)均為10.05(s),甲的方差為0.024(s2),乙的方差為0.008(s2),則這10次測(cè)試成績(jī)比較穩(wěn)定的是 運(yùn)動(dòng)員.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張長(zhǎng)方形紙片,剪下一個(gè)正方形,剩下一個(gè)長(zhǎng)方形,稱為第一次操作;在剩下的長(zhǎng)方形紙片中再剪下一個(gè)正方形,剩下一個(gè)長(zhǎng)方形,稱為第二次操作;…;若在第n次操作后,剩下的長(zhǎng)方形為正方形,則稱原長(zhǎng)方形為n階奇異長(zhǎng)方形.如圖1,長(zhǎng)方形ABCD中,若AB=2,BC=6,則稱長(zhǎng)方形ABCD為2階奇異長(zhǎng)方形.
(1)判斷與操作:
如圖2,長(zhǎng)方形ABCD長(zhǎng)為10,寬為4,它是奇異長(zhǎng)方形,請(qǐng)寫出它是 階奇異長(zhǎng)方形,并在圖中畫出裁剪線;
(2)探究與計(jì)算:
已知長(zhǎng)方形ABCD的一邊長(zhǎng)為30,另一邊長(zhǎng)為a (a<30),且它是3階奇異長(zhǎng)方形,請(qǐng)畫出所有可能的長(zhǎng)方形ABCD及裁剪線的示意圖,并求出相應(yīng)的a值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,AD=6,∠ACB=30°,將△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△EFG,使點(diǎn)D的對(duì)應(yīng)點(diǎn)G落在BC延長(zhǎng)線上,點(diǎn)A對(duì)應(yīng)點(diǎn)為E點(diǎn),C點(diǎn)對(duì)應(yīng)點(diǎn)為F點(diǎn),F(xiàn)點(diǎn)與C點(diǎn)重合(如圖1),此時(shí)將△EFG以每秒1個(gè)單位長(zhǎng)度的速度沿直線CB向左平移,直至點(diǎn)G與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)△EFG運(yùn)動(dòng)的時(shí)間為t(t>0).
(1)當(dāng)t為何值時(shí),點(diǎn)D落在線段EF上?
(2)設(shè)在平移過(guò)程中△EFG與矩形ABCD重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍;
(3)在平移過(guò)程中,當(dāng)點(diǎn)G與點(diǎn)B重合時(shí)(如圖2),將△CBA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到△C1A1B,直線EF與C1A1所在直線交于P點(diǎn),與C1B所在直線交于點(diǎn)Q.在旋轉(zhuǎn)過(guò)程中,△ABC的旋轉(zhuǎn)角為α(0°<α<180°),是否存在這樣的α,使得△C1PQ為等腰三角形?若存在,請(qǐng)寫出α的度數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com