如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過AB的中點C,分別交OA、OB于點E、F。若△ABO腰上的高BD等于底邊AB的一半且AB=.
(1)求∠AOB的度數(shù);
(2)求弧ECF的長;
(3)把扇形OEF卷成一個無底的圓錐,則圓錐的底面半徑是多少?

(1)∵△ABO腰上的高BD等于底邊AB的一半
∴∠A=30°
∵OA=OB
∴∠ABO=30°
∴∠AOB=120°
(2)由(1)得∠A=30°
在Rt△ACO中,AC=AB=2,∠A=30°,
則AO=2OC.
由勾股定理,求得OC=2.
∵∠AOB=120°.
由弧長公式可求得的長為π.
(3)r=

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過AB的中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O的切線;
(2)若△ABO腰上的高等于底邊的一半,且AB=4
3
,求
ECF
的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖Rt△ABO中,∠ABO=Rt∠,∠A=30°,OB=2,如果將Rt△ABO在坐標(biāo)平面內(nèi),繞原點O按順時針方向旋轉(zhuǎn)到△OA1B1的位置.
(1)求點A、B1的坐標(biāo);
(2)求經(jīng)過A、O、B1三點的拋物線解析式;
(3)拋物線對稱軸l上是否存在點P,使PO+PB1的值最?若存在,求出點P的坐標(biāo);若不存在,說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過AB中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O切線;
(2)若∠B=30°,且AB=4
3
,求
ECF
的長(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABO中,O是坐標(biāo)原點,A(-
3
,0)
,B(-
3
,1)

(1)①以原點O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內(nèi),則C點坐標(biāo)為(
 
,
 
);D點坐標(biāo)為(
 
,
 
);
②將△DOC沿OD折疊,點C落在第一象限的E處,畫出圖形,并求出點E的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)過(1)中的E、C兩點,求拋物線的解析式;
(3)在(2)中的拋物線EC段(不包括C、E點)上是否存在一點M,使得四邊形MEOC面積最大?若存在,求出這個最大值,并求出此時M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•牡丹江)如圖,△ABO中,AB⊥OB,OB=
3
,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1的坐標(biāo)為(  )

查看答案和解析>>

同步練習(xí)冊答案