【題目】已知:如圖,⊙O與⊙P相交于A、B兩點,點P在⊙O上,⊙O的弦AC切⊙P于點A,CP及其延長線交⊙P于D、E,過點E作EF⊥CE交CB的延長線于F.
(1)求證:BC是⊙P的切線;
(2)若CD=2,CB=2,求EF的長.
【答案】(1)見解析(2)
【解析】
(1)連接PA,PB,根據(jù)圓內(nèi)接四邊形對角互補證明∠PBC是直角,從而可以確定CB是⊙P的切線;
(2)根據(jù)△FCE∽△PCB,則,由于CB是⊙P的切線,所以根據(jù)CB2=CD(CD+DE),可以求得DE的長度,進(jìn)而求得CE的長度;再求得BP的長度即可,在Rt△CPB中,CP=3,CB=2,則可求得EF的長度.
(1)連接PB,PA,
∵點P在⊙O上,
∵⊙O的弦AC切⊙P于點A,
∴∠CAP=90°,
∵四邊形APBC是⊙O的內(nèi)接四邊形,
∴∠PBC=90°,即PB⊥CB.
∵B在⊙P上,
∴CB是⊙P的切線.
(2)∵CB是⊙P的切線,
∴CB2=CD(CD+DE).
∵CD=2,CB=,
∴(2)2═2×(2+ED).
∴DE=2.
∴CE=CD+DE=2+2=4.
∴在⊙P中,PD=PE=ED=1,
∵CP=3,CB=2,
∴BP=1.
∵EF⊥CE,
∴∠FEC=∠CBP=90°,∠FCE=∠PCB.
∴△FCE∽△PCB.
∴,
∵CB=2,CE=4,BP=1,
∴,
∴EF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,制作一種產(chǎn)品的同時,需要將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計算的時間為x分鐘,據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為15℃,加熱5分鐘使材料溫度達(dá)到60℃時停止加熱.停止加熱后,材料溫度逐漸下降,這時溫度y與時間x成反比例函數(shù)關(guān)系.
(1)分別求出該材料加熱過程中和停止加熱后y與x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時間內(nèi),需要對該材料進(jìn)行特殊處理,那么對該材料進(jìn)行特殊處理所用的時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從圖中的二次函數(shù)y=ax2+bx+c圖象中,觀察得出了下面的五條信息:
①b>0 ②c=0;③函數(shù)的最小值為﹣3;④a﹣b+c>0;⑤當(dāng)x1<x2<2時,y1>y2.
(1)你認(rèn)為其中正確的有哪幾個?(寫出編號)
(2)根據(jù)正確的條件請求出函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標(biāo);
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標(biāo);
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=12,高AD=8,矩形EFGH的一邊GH在BC上,頂點E、F分別在AB、AC上,AD與EF交于點M.
(1)求證:;
(2)設(shè)EF=x,EH=y(tǒng),寫出y與x之間的函數(shù)表達(dá)式;
(3)設(shè)矩形EFGH的面積為S,求S與x之間的函數(shù)表達(dá)式,并寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣5,0),則一元二次方程ax2+bx+c=0的另一根為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com