【題目】某商場(chǎng)有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購(gòu)物元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn) 盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí)指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品 (指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù) | ||||||
落在“鉛筆"的次數(shù) | ||||||
落在“鉛筆"的頻率, (結(jié)果保留小數(shù)點(diǎn)后兩位) |
(1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為____ ;( 結(jié)果保留小數(shù)點(diǎn)后一位數(shù)字);
(2)鉛筆每只元,飲料每瓶元,經(jīng)統(tǒng)計(jì)該商場(chǎng)每天約有名顧各參加抽獎(jiǎng)活動(dòng),請(qǐng)計(jì)算該商場(chǎng)每天需要支出的獎(jiǎng)品費(fèi)用;
(3)在(2)的條件下,該商場(chǎng)想把每天支出的獎(jiǎng)品費(fèi)用控制在元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為 度.
【答案】(1)0.7;(2)該商場(chǎng)每天大致需要支出元獎(jiǎng)品費(fèi)用:(3)36
【解析】
(1)利用頻率估計(jì)概率即可求解;
(2)根據(jù)扇形統(tǒng)計(jì)圖,結(jié)合獲得鉛筆的概率為0.7,求出獲得一瓶飲料的概率為0.3,列出算式40000×0.7×0.5+40000×0.3×3,計(jì)算即可求解;
(3)設(shè)轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為n°,則,解方程即可.
解:(1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為0.7;
(2)1-0.7=0.3,40000×0.7×0.5+40000×0.3×3=14000+36000=50000元;
(3)設(shè)轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為n°,
則,
解方程得:n=36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的階級(jí)在數(shù)軸上表示出來(lái);
(Ⅳ)原不等式組的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于,兩點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),與軸交于點(diǎn),連接.點(diǎn)為拋物線的頂點(diǎn),點(diǎn)為.
(1)點(diǎn)是第四象限內(nèi)拋物線上的一點(diǎn),過點(diǎn)作軸交拋物線于點(diǎn),作軸于點(diǎn),作軸于點(diǎn),點(diǎn)在點(diǎn)右邊.點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的周長(zhǎng)最大時(shí),求的最小值;
(2)如圖2,將原拋物線繞其對(duì)稱軸與軸的交點(diǎn)旋轉(zhuǎn)得新的拋物線,點(diǎn),的對(duì)應(yīng)點(diǎn)分別記為,,把拋物線沿直線平移,,的對(duì)應(yīng)點(diǎn)分別記為,是否存在點(diǎn),使得是以為腰的等腰三角形?若存在,請(qǐng)直接寫出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△ABE為等邊三角形,連接DE,CE,延長(zhǎng)AE交CD于F點(diǎn),則∠DEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,=n,M為BC上的一點(diǎn),連接BM.
(1)如圖1,若n=1,
①當(dāng)M為AC的中點(diǎn),當(dāng)BM⊥CD于H,連接AH,求∠AHD的度數(shù);
②如圖2,當(dāng)H為CD的中點(diǎn),∠AHD=45°,求的值和∠CAH的度數(shù);
(2)如圖3,CH⊥AM于H,連接CH并延長(zhǎng)交AC于Q,M為AC中點(diǎn),直接寫出tan∠BHQ的值(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長(zhǎng)線上一點(diǎn),連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo);
(2)求出△ABC的面積;
(3)如圖,將三角形ABC向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)的三角形A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com