精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知∠AOB以O為圓心,以任意長為半徑作弧,分別交OA、OB于F、E兩點,再分別以E、F為圓心,大于 EF長為半徑作圓弧,兩條圓弧交于點P,作射線OP,過點F作FD∥OB交OP于點D.

(1)若∠OFD=116°,求∠DOB的度數;
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.

【答案】
(1)解:∵OB∥FD,
∴∠0FD+∠A0B=18O°,
又∵∠0FD=116°,
∴∠A0B=180°﹣∠0FD=180°﹣116°=64°,
由作法知,0P是∠A0B的平分線,
∴∠D0B= ∠A0B=32°
(2)證明:∵0P平分∠A0B,
∴∠A0D=∠D0B,
∵0B∥FD,
∴∠D0B=∠ODF,
∴∠A0D=∠ODF,
又∵FM⊥0D,
∴∠OMF=∠DMF,
在△MFO和△MFD中 ,
∴△MFO≌△MFD(AAS).
【解析】(1)由作圖的步驟可知是角平分線的作圖,利用角平分線的性質及平行線的性質,再利用等腰三角形的內角和定理,可求出∠DOB度數;(2)利用平行線的內錯角相等及角平分線條件,再利用已知,可根據“AAS”證出全等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當等對角線四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式決定自己的考試內容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學實驗F的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列計算正確的是( 。
A.(a34=a7
B.a8÷a4=a2
C.(2a23a3=8a9
D.4a5﹣2a5=2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為解決江北學校學生上學過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行

河岸AB與MN之間的距離).在測量時,選定河對岸MN上的點C處為橋的一端,在河岸點A處,測得∠CAB=30°,

沿河岸AB前行30米后到達B處,在B處測得∠CBA=60°,請你根據以上測量數據求出河的寬度.(參考數據:≈1.41,≈1.73,結果保留整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點E,AB=9,cos∠BAC=,tan∠DBC=

求:(1)邊CD的長;

(2)△BCE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,過點C作CD⊥AB于點D,點E是AB邊上一動點(不含端點A、B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G(如圖①).

(1)求證:AE=CG;
(2)若點E運動到線段BD上時(如圖②),試猜想AE、CG的數量關系是否發(fā)生變化,請直接寫出你的結論;

(3)過點A作AH垂直于直線CE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲商品每件20元,乙商品每件15元,若購買甲、乙兩種商品共40件,恰好用去675元,求甲、乙商品各買多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】化簡(﹣x)3(﹣x)2的結果正確的是( 。
A.﹣x6
B.x6
C.﹣x5
D.x5

查看答案和解析>>

同步練習冊答案