【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),對稱軸是直線x=﹣,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結(jié)OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點E的坐標(biāo);
(3)設(shè)點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的?
【答案】(1) y=x2+3x(2)當(dāng)點E的坐標(biāo)是(8,﹣2)或(2,﹣8)時,△EOD∽△AOB;(3)PD=或PD=3
【解析】
試題分析:(1)運用待定系數(shù)法和對稱軸的關(guān)系式求出a、b的即可;
(2)由待定系數(shù)法求出直線AC的解析式,由拋物線的解析式構(gòu)成方程組就可以求出B點的坐標(biāo),由相似三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)就可以得出E的坐標(biāo);
(3)分情況討論當(dāng)點B落在FD的左下方,點B,D重合,點B落在OD的右上方,由三角形的面積公式和菱形的性質(zhì)的運用就可以求出結(jié)論.
試題解析:1)∵y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),且對稱軸是直線x=﹣,
∴,
解得:,
∴二次函數(shù)的解析式為y=x2+3x;
(2)如圖1,
∵點A(1,4),線段AD平行于x軸,
∴D的縱坐標(biāo)為4,
∴4=x2+3x,
∴x1=﹣4,x2=1,
∴D(﹣4,4).
設(shè)直線AC的解析式為y=kx+b,由題意,得
,
解得:,
∴y=2x+2;
當(dāng)2x+2=x2+3x時,
解得:x1=﹣2,x2=1(舍去).
∴y=﹣2.
∴B(﹣2,﹣2).
∴DO=4,BO=2,BD=2,OA=.
∴DO2=32,BO2=8,BD2=40,
∴BO2+BO2=BD2,
∴△BDO為直角三角形.
∵△EOD∽△AOB,
∴∠EOD=∠AOB,,
∴∠EOD﹣∠AOB=∠AOB﹣∠AOB,
∴∠BOD=∠AOE=90°.
即把△AOB繞著O點順時針旋轉(zhuǎn)90°,OB落在OD上B′,OA落在OE上A1
∴A1(4,﹣1),
∴E(8,﹣2).
作△AOB關(guān)于x軸的對稱圖形,所得點E的坐標(biāo)為(2,﹣8).
∴當(dāng)點E的坐標(biāo)是(8,﹣2)或(2,﹣8)時,△EOD∽△AOB;
(3)由(2)知DO=4,BO=2,BD=2,∠BOD=90°.
若翻折后,點B落在FD的左下方,如圖2.
S△HFP=S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,
∴DH=HF,B′H=PH,
∴在平行四邊形B′FPD中,PD=B′F=BF=BD=;
若翻折后,點B,D重合,S△HFP=S△BDP,不合題意,舍去.
若翻折后,點B落在OD的右上方,如圖3,
S△HFP=S△BDP=S△BPF=S△DPF=S△B′PF=S△DHF=S△B′HP
∴B′P=BP,B′F=BF.DH=HP,B′H=HF,
∴四邊形DFPB′是平行四邊形,
∴B′P=DF=BF,
∴B′P=BP=B′F=BF,
∴四邊形B′FPD是菱形,
∴FD=B′P=BP=BD=,根據(jù)勾股定理,得
OP2+OB2=BP2,
∴(4﹣PD)2+(2)2=()2,
PD=3,PD=5>4(舍去),
綜上所述,PD=或PD=3時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間 x(單位:h)變化的圖象如圖所示,
根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)一個多邊形的內(nèi)角和是外角和的2倍,它是幾邊形?
(2)如圖所示,在△ABC中,AB=AC,AC邊上的中線把三角形的周長分為24 cm和30 cm的兩部分,求三角形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, A、B、C、D、E是反比例函數(shù)(x>0)上五個整數(shù)點(橫、縱坐標(biāo)均為整數(shù)),分別以這些點向橫軸或縱軸作垂線段,由垂線段所在的正方形邊長為半徑作四分之一圓周的兩條弧,組成如圖5所示的五個橄欖形(陰影部分),則這五個橄欖形的面積總和是 (用含π的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面的點陣圖形和與之相對應(yīng)的等式,探究其中的規(guī)律:
(1)請你在④和⑤后面的橫線上分別寫出相對應(yīng)的等式.
①·4×0+1=4×1-3;
② 4×1+1=4×2-3;
③ 4×2+1=4×3-3;
④ ______________;
⑤ ______________;
(2)通過猜想,寫出與第個圖形相對應(yīng)的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=﹣2x2先向右平移1個單位,再向下平移2個單位,所得函數(shù)解析式是( 。
A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(4)從(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店欲購進甲、乙兩種商品,已知甲的進價是乙的進價的一半,進3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價每件分別為80元、130元,該商店決定用不少于6710元且不超過6810元購進這兩種商品共100件.
(1)求這兩種商品的進價;
(2)該商店有幾種進貨方案?哪種進貨方案可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com