【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象交于A(1,-k+4),B(k-4,-1)兩點(diǎn).
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
【答案】(1) y=, y=x+1;(2) x<-2或0<x<1.
【解析】
(1)把點(diǎn)A(1,-k+4)代入y=中,求得k值,即可得反比例函數(shù)的解析式和點(diǎn)A、B的坐標(biāo);把點(diǎn)A的坐標(biāo)代入y=x+b求得b值,即可得一次函數(shù)的解析式;(2)觀察圖象,結(jié)合反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),直接寫出答案即可.
(1)∵反比例函數(shù)y=經(jīng)過(guò)點(diǎn)A(1,-k+4),
∴-k+4=,即-k+4=k,
∴k=2,∴A(1,2),B(-2,-1).
∵一次函數(shù)y=x+b的圖象經(jīng)過(guò)點(diǎn)A(1,2),
∴2=1+b,∴b=1,
∴反比例函數(shù)的表達(dá)式為y=,一次函數(shù)的表達(dá)式為y=x+1.
(2)由圖象可知,當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí),x的取值范圍是x<-2或0<x<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)N沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△ONC的面積是△OAC面積的時(shí),求出這時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC邊上,且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?
(4)請(qǐng)你猜想:當(dāng)∠A為多少度時(shí),∠EDF+∠EFD=120°,并請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過(guò)B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P為等邊△ABC內(nèi)一點(diǎn),∠APB=112°,如果把△ABP繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B與點(diǎn)C重合,此時(shí)點(diǎn)P落在點(diǎn)P'處,那么∠P P'C=____________度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工企業(yè)生產(chǎn)并銷售某種農(nóng)產(chǎn)品,假設(shè)銷售量與加工產(chǎn)量相等.已知每千克生產(chǎn)成本y1(單位:元)與產(chǎn)量x(單位:kg)之間滿足表達(dá)式y1=下圖中線段AB表示每千克銷售價(jià)格y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)表達(dá)式.
(1)試確定每千克銷售價(jià)格y2與產(chǎn)量x之間的函數(shù)表達(dá)式,并寫出自變量的取值范圍;
(2)若用w(單位:元)表示銷售該農(nóng)產(chǎn)品的利潤(rùn),試確定w與產(chǎn)量x之間的函數(shù)表達(dá)式;
(3)求銷售量為70 kg時(shí),銷售該農(nóng)產(chǎn)品是賺錢,還是虧本?賺錢或虧本了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:△ABE≌△CAD;
(2)求∠BPQ的度數(shù);
(3)求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-2x+4交x軸和y軸于點(diǎn)A和點(diǎn)B,點(diǎn)C(0,-2)在y軸上,連接AC。
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P是直線AB上一點(diǎn),若△APC的面積為4,求點(diǎn)P;
(3)過(guò)點(diǎn)B的直線BH交x軸于點(diǎn)H(H點(diǎn)在點(diǎn)A右側(cè)),當(dāng)∠ABE=45時(shí),求直線BE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,分別以A、C為圓心,大于AC長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M、N,作直線MN,與AC交于點(diǎn)D,與BC交于點(diǎn)E,連接AE.
(1)∠ADE= °;
(2)AE CE(填“>、<、=”)
(3)當(dāng)AB=3、AC=5時(shí),△ABE的周長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com