【題目】關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)如果,且k為整數(shù),求k的值.
【答案】(1)k <0;(2)-2,1
【解析】
(1)方程有兩個(gè)實(shí)數(shù)根,必須滿足△=b2-4ac≥0,從而求出實(shí)數(shù)k的取值范圍;
(2)先由一元二次方程根與系數(shù)的關(guān)系,得x1+x2=-2,x1x2=k+1.再代入不等式x1+x2-x1x2<4,即可求得k的取值范圍,然后根據(jù)k為整數(shù),求出k的值.
解:(1)∵方程有實(shí)數(shù)根,
∴△=(-2)2-4(k+1)>0,
解得k<0.
故k的取值范圍是k<0.
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,得x1+x2=2,x1x2=k+1,
x1+x2-x1x2=2-(k+1).
由已知,得2-(k+1)<4,解得k>-3.
又由(1)k<0,
∴-3<k<0.
∵k為整數(shù),
∴k的值為-2和-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的解析式為y=2x+5,其圖象過(guò)點(diǎn)A(-2,a),B(b,-1).
(1)求a,b的值,并畫出此一次函數(shù)的圖象;
(2)在y軸上是否存在點(diǎn)C,使得AC+BC的值最。咳舸嬖,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.作DE⊥AC交邊AB或BC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(s).
(1)求AC的長(zhǎng).
(2)請(qǐng)用含t的代數(shù)式表示線段DE的長(zhǎng).
(3)當(dāng)點(diǎn)F在邊BC上時(shí),求t的值.
(4)設(shè)正方形DEFG與△ABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦公司有A型、B型、C型三種型號(hào)的電腦,其中A型每臺(tái)2500元、B型每臺(tái)4000元、C型每臺(tái)6000元,某中學(xué)現(xiàn)有資金100500元,計(jì)劃全部用于從這家電腦公司購(gòu)進(jìn)36臺(tái)兩種型號(hào)的電腦這,這個(gè)學(xué)校有哪幾種購(gòu)買方案可選擇,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線AB與x軸相交于點(diǎn)C,AD⊥x軸于點(diǎn)D.
(1)m= ;
(2)求點(diǎn)C的坐標(biāo);
(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).
(1)如圖①,當(dāng)點(diǎn)E自D向C,點(diǎn)F自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的位置關(guān)系,并說(shuō)明理由;
(2)如圖②,當(dāng)E,F分別移動(dòng)到邊DC,CB的延長(zhǎng)線上時(shí),連接AE和DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不須證明)
(3)如圖③,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com