【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝輛.由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓后上崗,也能獨立進行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):名熟練工和名新工人每月可安裝輛電動汽車;名熟練工和名新工人每月可安裝輛電動汽車.

(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?

(2)如果工廠招聘名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?

【答案】(1) 每名熟練工每月可以安裝輛電動車,新工人每月分別安裝輛電動汽車;(2)調(diào)熟練工人,新工人人;調(diào)熟練工人,新工人人;調(diào)熟練工人,新工人人;調(diào)熟練工人,新工人人.

【解析】(1)設每名熟練工每月可以安裝輛電動車,新工人每月分別安裝輛電動汽車,

根據(jù)題意得,解之得.

答:每名熟練工每月可以安裝輛電動車,新工人每月分別安裝輛電動汽車;

(2)設調(diào)熟練工人,

由題意得,

整理得,,

,

,,時,,,,,

即:調(diào)熟練工人,新工人人;調(diào)熟練工人,新工人人;

調(diào)熟練工人,新工人人;調(diào)熟練工人,新工人人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】東方專賣店專銷某種品牌的鋼筆,進價12/支,售價20/支.為了促銷,專賣店決定凡是買10支以上的,每多買一支,售價就降低0.10元(例如,某人買20支鋼筆,于是每只降價0.10×20﹣10=1元,就可以按19/支的價格購買),但是最低價為16/支.

1求顧客一次至少買多少支,才能以最低價購買?

2)寫出當一次購買x支時(x10),利潤y(元)與購買量x(支)之間的函數(shù)關系式;

3)有一天,一位顧客買了46支,另一位顧客買了50支,專實店發(fā)現(xiàn)賣了50支反而比賣46支賺的錢少,為了使每次賣的多賺錢也多,在其他促銷條件不變的情況下,最低價16/支至少要提高到多少,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防甲型H1N1,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量ymg)與時間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關系式呢?

(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?

(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一節(jié)數(shù)學實踐活動課上,老師拿出三個邊長都為5cm 的正方形硬紙板,他向同學們提出了這樣一個問題:若將三個正方形紙板不重疊地放在桌面上,用一個圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應有多大?問題提出后,同學們經(jīng)過討論,大家覺得本題實際上就是求將三個正方形硬紙板無重疊地適當放置,圓形硬紙板能蓋住時的最小直徑.老師將同學們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如圖所示:

(1)通過計算(結(jié)果保留根號與π).

(Ⅰ)圖①能蓋住三個正方形所需的圓形硬紙板最小直徑應為

(Ⅱ)圖②能蓋住三個正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個正方形所需的圓形硬紙板最小直徑為

(2)其實上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個正方形時直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店老板到廠家購甲、乙兩種品牌的服裝,若購甲種品牌服裝10件,乙種品牌服裝9件,需要1800元;若購進甲種品牌服裝8件,乙種品牌服裝18件,需要2520元.

(1)求甲、乙兩種品牌的服裝每件分別為多少元?

(2)若銷售一件甲種品牌服裝可獲利18元,銷售一件乙種品牌服裝可獲利30元,根據(jù)市場需要,服裝店老板決定:購進甲種品牌服裝的數(shù)量要比購進乙種品牌服裝的數(shù)量的2倍還多4件,且甲種品牌服裝最多可購進28件,這樣服裝全部售出后可使總的獲利不少于732元,問有幾種進貨方案?并寫出進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,ABCD,求∠A+AEC+C的度數(shù).

解:過點EEFAB

EFAB(已作)

∴∠A+AEF=180°______

又∵ABCD(已知)

EFCD______

∴∠CEF+______=180°(兩直線平行,同旁內(nèi)角互補)

∴∠A+AEF+CEF+C=360°(等式性質(zhì))

即∠A+AEC+C=______

2)根據(jù)上述解題及作輔助線的方法,在圖2中,ABEF,則∠B+C+D+E=______

3)根據(jù)(1)和(2)的規(guī)律,圖3ABGF,猜想:∠B+C+D+E+F=______

4)如圖4,ABCD,在B,D兩點的同一側(cè)有M1,M2,M3,Mnn個折點,則∠B+M1+M2+…+Mn+D的度數(shù)為______(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火車勻速通過隧道時,火車在隧道內(nèi)的長度(米)與火車行駛時間(秒)之間的關系用圖象描述如圖所示,有下列結(jié)論:

火車的長度為120米;

火車的速度為30/秒;

火車整體都在隧道內(nèi)的時間為25秒;

隧道長度為750米.

其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以正方形ABCD的邊AB為一邊向外作等邊ABE,則BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙OBC相切于點D,與AC交于點E,連接AD.

(1)求證:AD平分∠BAC;

(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案