【題目】如圖1,四邊形ACDE是美國第二十任總統(tǒng)伽菲爾德驗證勾股定理時用到的一個圖形,abcRtABCRtBED邊長,易知AE=,這時我們把關(guān)于x的形如的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題:

1)判斷方程是否是 “勾系一元二次方程”;并說明理由.

2)求證:關(guān)于的“勾系一元二次方程” 必有實數(shù)根;

3)如圖2,已知AB、CD是半徑為5O的兩條平行弦,AB=2aCD=2b,ab,關(guān)于x的方程是“勾系一元二次方程”,求BAC的度數(shù)

【答案】1)是,理由詳見解析;(2)詳見解析;(345°

【解析】

1)根據(jù)“勾系一元二次方程”的定義即可判斷;

2)利用勾股定理以及“勾系一元二次方程”的定義即可解決問題;

3)如圖2中,連接OC,OB,作OECDE,作EO的延長線交ABF,利用全等三角形的性質(zhì)推導出∠COB=90°即可解決問題.

1 “勾系一元二次方程”,理由如下:

中,

能構(gòu)成直角三角形

∴方程是“勾系一元二次方程”

2)∵關(guān)于的方程是“勾系一元二次方程”

構(gòu)成直角三角形,c是斜邊

∴關(guān)于的“勾系一元二次方程”必有實數(shù)根.

3)在圖2中,連接OC,OB,作OECDE,作EO的延長線交ABF,如下圖:

∵關(guān)于x的方程是“勾系一元二次方程”

,5構(gòu)成直角三角形,5是斜邊

AB//CDOECD

OFAB

∴∠OEC=OFB= 90°

AB=2aCD=2b

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個正整數(shù)都可以進行這樣的分解,,是正整數(shù)且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解,并規(guī)定:,例如可以分解成、.因為,所有是最佳分解,所以

1)求

2)如果一個兩位正整數(shù),,為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為,那么我們稱這個數(shù)為 “吉祥數(shù)”,求所有“吉祥數(shù)”中的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2ax1,y2ax2ax1(其中a為常數(shù),且a0)

1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;

2)當a時,設y1=-ax2ax1x軸分別交于M,N兩點(MN的左邊),y2ax2ax1x軸分別交于E,F兩點(EF的左邊),觀察M,N,EF四點坐標,請寫出一個你所得到的正確結(jié)論,并說明理由;

3)設上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過AB兩點,l在直線l1l2之間,且l與兩條拋物線分別交于CD兩點,求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在⊙O中,BC=2,AB=AC,點DAC上的動點,且cosB=

1)求AB的長度;

2)求ADAE的值;

3)過A點作AHBD,求證:BH=CD+DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,∠BAD=90°,ADBC的延長線交于點F,點ECF上,且∠DEC=BAC

1)求證:DEO的切線;

2)若AB=AC,CE=10,EF=14,求CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,菱形ABCD中,AB=5,∠ABC=60°,∠EAF=60°,∠EAF的兩邊分別交BC、CDEF

1)如圖1所示,當點EF分別在邊BC、CD上時,求CE+CF的值;

2)如圖2所示,當點分別在的延長線時,請從,兩題中任選一題作答,我選______題.

題:則的值是________

題:則的關(guān)系是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為表彰在了不起我的國演講比賽中獲獎的選手,決定購買甲、乙兩種圖書作為獎品.已知購買30本甲種圖書,50本乙種圖書共需1350元;購買50本甲種圖書,30本乙種圖書共需1450元.

1)求甲、乙兩種圖書的單價分別是多少元?

2)學校要求購買甲、乙兩種圖書共40本,且甲種圖書的數(shù)量不少于乙種圖書數(shù)量的,請設計最省錢的購書方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民選擇家用凈水器,光明商場計劃從生產(chǎn)廠家購進甲、乙兩種型號的家用凈水器,甲型號凈水器進價為160/臺,乙型號凈水器進價為280/臺,經(jīng)過協(xié)商溝通,生產(chǎn)廠家拿出了兩種優(yōu)惠方案:第一種優(yōu)惠方案:甲、乙兩種型號凈水器均按進價的8折收費;第二種優(yōu)惠方案:甲型號凈水器按原價收費,乙型號凈水器的進貨量超過10臺后超過的部分按進價的6折收費.

光明商場只能選擇一種優(yōu)惠方案,已知光明商場計劃購進甲型號凈水器數(shù)量是乙型號凈水器數(shù)量的1.5倍,設光明商場購進乙型號凈水器臺,選擇第一種優(yōu)惠方案所需費用為片元,選擇第二種優(yōu)惠方案所需費用為元.

1)分別求出、的關(guān)系式:

2)光明商場計劃購進乙型號凈水器40臺,請你為光明商場選擇合適的優(yōu)惠方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊ADBC上,頂點FH在菱形ABCD的對角線BD上.

1)求證:BG=DE;

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

同步練習冊答案