【題目】如圖,點(diǎn)PAC上,點(diǎn)QAB上,BE平分∠ABP,交ACECF平分∠ACQ,交ABF,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,則∠A的度數(shù)為_______

【答案】80°

【解析】

根據(jù)三角形的內(nèi)角和定理,及角平分線上的性質(zhì)先計(jì)算∠ABC+ACB的度數(shù),從而得出∠A的度數(shù).

解:如圖,連接BC

BE平分∠ABP,交ACE,CF平分∠ACQ,交ABF,

∴∠ABE=DBE= ABD,∠ACF=DCF=ACD,

又∠BDC=140°,∠BGC=110°

∴∠DBC+DCB=40°,∠GBC+GCB=70°

∴∠EBD+FCD=70°-40°=30°,

∴∠ABE+ACF=30°

∴∠ABE+ACF+GBC+GCB=70°+30°=100°,即∠ABC+ACB=100°

∴∠A=80°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為_______°;

2請補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競賽,請用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)DBC上,△ADE是等腰三角形,AD AE ,∠DAE 100°,當(dāng)DEAC時(shí),求∠BAD和∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Aa,0),B0b),且ab滿足.

1)填空:a= ,b=

2)如圖1,將ΔAOB沿x軸翻折得ΔAOCD為線段AB上一動(dòng)點(diǎn),OEODAC于點(diǎn)E,求S四邊形ODAE.

3)如圖2,DAB上一點(diǎn),過點(diǎn)BBFOD于點(diǎn)G,交x軸于點(diǎn)F,點(diǎn)Hx軸正半軸上一點(diǎn),∠BFO=DHO,求證:AF=OH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)為獎(jiǎng)勵(lì)在演講比賽中獲獎(jiǎng)的同學(xué),班主任派學(xué)習(xí)委員小明為獲獎(jiǎng)同學(xué)買獎(jiǎng)品,要求每人一件.小明到文具店看了商品后,決定獎(jiǎng)品在鋼筆和筆記本中選擇.如果買4個(gè)筆記本和2支鋼筆,則需86元;如果買3個(gè)筆記本和1支鋼筆,則需57元.

1)求購買每個(gè)筆記本和鋼筆分別為多少元?

2)售貨員提示,買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買xx0)支鋼筆需要花y元,請你求出yx的函數(shù)關(guān)系式;

3)在(2)的條件下,小明決定買同一種獎(jiǎng)品,數(shù)量超過10個(gè),請幫小明判斷買哪種獎(jiǎng)品省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=

求把手端點(diǎn)A到BD的距離;

求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選擇適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1);(2)

(3);(4).

查看答案和解析>>

同步練習(xí)冊答案