【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).

【答案】
(1)解:∵一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球,

∴從袋中摸出一個球是黃球的概率為: =


(2)解:設(shè)從袋中取出x個黑球,

根據(jù)題意得: = ,

解得:x=2,

經(jīng)檢驗,x=2是原分式方程的解,

所以從袋中取出黑球的個數(shù)為2個


【解析】(1)由一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球,直接利用概率公式求解即可求得答案;(2)首先設(shè)從袋中取出x個黑球,根據(jù)題意得: = ,繼而求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“直角”在初中幾何學(xué)習(xí)中無處不在. 如圖,已知∠AOB,請仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點G.若BF=FC=1,試求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點,且AE= AB.⊙O經(jīng)過點E,與邊CD所在直線相切于點G(∠GEB為銳角),與邊AB所在直線交于另一點F,且EG:EF= :2.當(dāng)邊AD或BC所在的直線與⊙O相切時,AB的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個古代車輪的碎片,小明為求其外圓半徑,連結(jié)外圓上的兩點A、B,并使AB與車輪內(nèi)圓相切于點D,做CD⊥AB交外圓于點C.測得CD=10cm,AB=60cm,則這個車輪的外圓半徑為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點),已知EF=CD=8,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:

污水處理設(shè)備

A型

B型

價格(萬元/臺)

m

m﹣3

月處理污水量(噸/臺)

220

180


(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是射線CB上的動點,點F是射線CD上一點,且AF⊥AE,射線EF與對角線BD交于點G,與射線AD交于點M;

(1)當(dāng)點E在線段BC上時,求證:△AEF∽△ABD;
(2)在(1)的條件下,聯(lián)結(jié)AG,設(shè)BE=x,tan∠MAG=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當(dāng)△AGM與△ADF相似時,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案