【題目】類比特殊四邊形的學(xué)習(xí),我們可以定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)【探索體驗(yàn)】如圖1,已知在四邊形ABCD中,∠A=40°,∠B=100°,∠C=120°.求證:四邊形ABCD是“等對角四邊形”.

(2)如圖2,若AB=AD=a,CB=CD=b,且a≠b,那么四邊形ABCD是“等對角四邊形”嗎?試說明理由.

(3)【嘗試應(yīng)用】如圖3,在邊長為6的正方形木板ABEF上裁出“等對角四邊形”ABCD,若已經(jīng)確定DA=4m,∠DAB=60°,是否在正方形ABEF內(nèi)(包括邊上)存在一點(diǎn)C,使四邊形ABCD以∠DAB=∠BCD為等對角的四邊形的面積最大?若存在,試求出四邊形ABCD的最大面積;若不存在,請說明理由.

【答案】
(1)證明:∵在四邊形ABCD中,∠A=40°,∠B=100°,∠C=120°.

∴∠D=360°﹣∠A﹣∠B﹣∠C=100°,∠A≠∠C,

∴∠D=∠D,

∴四邊形ABCD是“等對角四邊形”


(2)證明:如圖2,連接BD,

∵AB=AD,CB=CD,

∴∠ABD=∠ADB,∠CBD=∠CDB,

∴∠ABD+∠CBD=∠ADB+∠CDB,

∴∠ABC=∠ADC,

∵AB=AD=a,CB=CD=b,且a≠b,且BD=BD,

∴△ABD與△CBD不相似,

∴∠A≠∠C,

∴四邊形ABCD是“等對角四邊形”


(3)如圖3,連接BD,

當(dāng)∠DAB=∠BCD=60°時(shí),四邊形ABCD是“等對角四邊形”,

此時(shí)點(diǎn)C在BD為弦的 上,

要使四邊形ABCD的面積最大,則點(diǎn)C在邊BE上,

過點(diǎn)D作DH⊥AB于點(diǎn)H,作DM⊥BC于點(diǎn)M,

在Rt△ADH中,∠DAH=60°,AD=4,

∴AH=2,DH=2

∴BH=AB﹣AH=4,

∵四邊形DHBM是矩形,

∴BM=DH=2 ,DM=BH=4,

在Rt△DMC中,∠DCM=60°,

∴CM= DM= ,

∴BC=BM+CM=2 + =

∴S四邊形ABCD=SABD+SBCD= ×6×2 + × ×4= (m2


【解析】(1)求出第4個(gè)角度數(shù),按照定義即可判斷出結(jié)論;(2)利用等邊對等角定理,須連接BD,得出有一組對角相等,再證另一組對角不等,得出結(jié)論;(3)借鑒(2)的方法,要使∠BCD=60°,C需在以BD為弦的弧BD上,若四邊形ABCD的面積最大,則點(diǎn)C在邊BE上,才能使高最大,進(jìn)而面積最大.
【考點(diǎn)精析】掌握三角形的面積和圓周角定理是解答本題的根本,需要知道三角形的面積=1/2×底×高;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)耐评砝碛苫驍?shù)學(xué)表達(dá)式:

如圖,在ABC中,已知∠ADE=∠B,∠1=∠2FGAB于點(diǎn)G

求證:CDAB.

證明:∵∠ADE=∠B(已知),

DEBC ),

DEBC(已證),

),

又∵∠1=∠2(已知),

),

CDFG(同位角相等,兩直線平行),

∴∠CDB=∠FGB(兩直線平行,同位角相等),

FGAB(已知),

∴∠FGB90°(垂直的定義).

∴∠CDB90°

CDAB(垂直的定義).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為矩形ABCD的對角線,AE⊥BD,垂足為E,tan∠BAE= ,BE=1,點(diǎn)P、Q分別在BD、AD上,連接AP、PQ,則AP+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】詩詞文化在中國源遠(yuǎn)流長,其中蘊(yùn)含著很深的文化內(nèi)涵,小天參加了學(xué)習(xí)舉辦的“詩詞大會”,答對最后兩道單選題就順利通關(guān),第一道單選題與第二道單選題均有4個(gè)選項(xiàng),這兩道題小天都不會,不過小天還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)若小天兩次“求助”都在第一道題中使用,則小天答對第一道題的概率是多少?
(2)若小天將每道題各用一次“求助”,請用樹狀圖或列表法,求小天順利通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AGBC于點(diǎn)E.若BF6,AB5,則AE的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

,分別是什么數(shù)時(shí),多項(xiàng)式恒等?

閱讀理解:

所謂恒等式,就是指不論用任何數(shù)值來代替式中的變量,左、右兩邊的值都相等的等式.我們用符號“”來表示恒等,讀作“恒等于”.于是,上面的問題也可以表述為:已知,求待定系數(shù),

問題解決:

(方法1—數(shù)值代入法)由恒等式的概念,我們每用一個(gè)數(shù)值來代替問題中的,即可得到一個(gè)關(guān)于的方程.因此,要求出的值,只需要用兩個(gè)不同的數(shù)值分別代替式中的,就可以得到一個(gè)關(guān)于的二元一次方程組,解這個(gè)方程組,即可求得

解:分別用,代替式中的,得

解之,得

(方法2—系數(shù)比較法)

定理 如果

那么,,,,

根據(jù)這個(gè)定理,也可以這樣解:

解:由題設(shè),

比較對應(yīng)項(xiàng)的系數(shù),得,

請回答下面的問題:

1)已知多項(xiàng)式.求的值;

2)如果除后余,求的值及商式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P41,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )
A.2a3+a2=2a5
B.(﹣2ab)3=﹣2ab3
C.2a3÷a2=2a
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AFD=∠1AC∥DE

(1)試說明:DF∥BC;

(2)若∠1=68°,DF平分∠ADE,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案