【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn),并沿東北方向移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為,受影響區(qū)域的半徑為,市位于點(diǎn)的北偏東方向上,距離點(diǎn)處.

1市是否受到這次臺(tái)風(fēng)的影響?為什么?

2)若市受到臺(tái)風(fēng)影響,求受影響的時(shí)間有多長(zhǎng)?

【答案】(1)見解析;(2)8h.

【解析】

1)作ABPQ于點(diǎn)H,在RtABP中,求出BH的長(zhǎng)與200千米相比較即可;

2)以A為圓心,以200為半徑作圓交PQC、D兩點(diǎn),求出CD的長(zhǎng),再根據(jù)臺(tái)風(fēng)的速度即可求出臺(tái)風(fēng)影響A市的時(shí)間.

1市會(huì)受到臺(tái)風(fēng)影響,

如圖所示:

∵臺(tái)風(fēng)中心位于點(diǎn)P,并沿東北方向PQ移動(dòng),A市位于點(diǎn)P的北偏東75°方向上,

∴∠QPG=45°,∠NPA=75°,∠APG=15°,

∴∠APQ=30°,

ABPQ于點(diǎn)B,在RtABP中,由條件知,PA=320,

AB=PA=160200

市會(huì)受到臺(tái)風(fēng)影響;

2)如圖,以A為圓心,以200為半徑作圓交PQC、D兩點(diǎn),若臺(tái)風(fēng)中心移動(dòng)到C時(shí),臺(tái)風(fēng)開始影響A市,臺(tái)風(fēng)中心移動(dòng)到D時(shí),臺(tái)風(fēng)影響結(jié)束.

由(1)得AB=160,由條件得AC=AD=200,

由勾股定理得 ==

CD=2CB=240,

∴臺(tái)風(fēng)影響的時(shí)間t= 240÷30=8(h),

A市受影響時(shí)間是8h

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求PQ的長(zhǎng);

(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn),,則的大小為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分8分)已知O的半徑為13cm,弦ABCD,AB=24cm,CD=10cm,求AB和CD之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】樂(lè)樂(lè)家附近的商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費(fèi)50元(含50元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)9折、8折、7折區(qū)域,則顧客就可以獲得相應(yīng)區(qū)域的優(yōu)惠.

1)某顧客在該商場(chǎng)消費(fèi)40元,是否可以獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì)?

2)某顧客在該商場(chǎng)正好消費(fèi)66元,則他轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校初一某班學(xué)生的平均體重是45公斤.

(1)下表給出了該班6位同學(xué)的體重情況(單位:公斤),完成下表

姓 名

小麗

小華

小明

小方

小穎

小寶

體 重

37

50

40

   

36

48

體重與平均體重的差值

﹣8

+5

   

+2

   

   

(2)最重的與最輕的同學(xué)的體重相差多少?

(3)這6位同學(xué)的平均體重是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=2,AC=AD,增加下列條件:①AB=AE;BC=DE;③∠C=D;④∠B=E,其中能使△ABC≌△AED的條件是______________.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCAB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OEOC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OEOB重合時(shí)停止旋轉(zhuǎn).

1)當(dāng)ODOAOC之間,且∠COD=20°時(shí),則∠AOE=______

2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;

3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7COD,試求∠AOE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.

(1)求證:BD=CD;

(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案