【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)E為AD邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、D不重合),∠EBM=45°,BE交對(duì)角線AC于點(diǎn)F,BM交對(duì)角線AC于點(diǎn)G、交CD于點(diǎn)M.
(1)如圖1,聯(lián)結(jié)BD,求證:,并寫出的值;
(2)聯(lián)結(jié)EG,如圖2,若設(shè),求y關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)當(dāng)M為邊DC的三等分點(diǎn)時(shí),求的面積.
【答案】;;或
【解析】
(1)根據(jù)正方形的性質(zhì)得到∠EDB=∠GCB=45°,∠ABD=∠CBD=45°,根據(jù)相似三角形的判定定理證明即可;
(2)作EH⊥AC于H,根據(jù)等腰直角三角形的性質(zhì)、勾股定理和相似三角形的性質(zhì)得到y關(guān)于x的函數(shù)解析式;
(3)分CM=CD和CM=CD兩種情況,根據(jù)相似三角形的性質(zhì)解答即可.
(1)證明:∵四邊形ABCD是正方形,
∴∠EDB=∠GCB=45°,∠ABD=∠CBD=45°,又∠EBM=45°,
∴∠GBC+∠DBM=45°,∠EBD+∠DBM=45°,
∴∠GBC=∠EBD,又∠EDB=∠GCB=45°,
∴△DEB∽△CGB,
∴DE:CG=BD:BC=;
(2)如圖2,作EH⊥AC于H,
則AH=EH=x,
∵△DEB∽△CGB,
∴,
∴CG=(6x),
∴HG=ACAHCG=3,
∵EG2=EH2+HG2,
∴;
(3)當(dāng)CM=CD=2時(shí),
∵四邊形ABCD是正方形,
∴CD∥AB,
∴,
∴CG=,
∴DE=3,則AE=3,
∴AH=EH=,
∵AD∥BC,
∴,
∴AF=2,
∴GF=ACAFCG=,
∴S△EGF=×FG×EH=,
當(dāng)CM=CD=4時(shí),
,
∴CG=,
∴DE=,則AE=,
AH=EH=,
∵,
∴AF=,
∴GF=ACAFCG=,
∴S△EGF=×FG×EH=.
綜上,S△EGF=或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)點(diǎn)D(2,2)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BDP的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)連接AD并延長(zhǎng),過(guò)拋物線上一點(diǎn)Q(Q不與A重合)作QN⊥x軸,垂足為N,與射線交于點(diǎn)M,使得QM=3MN,若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.
(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?
(2)學(xué)校計(jì)劃租用甲、乙兩種客車共8輛,送330名師生集體外出活動(dòng),最節(jié)省的租車費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在平行四邊形的對(duì)角線上,過(guò)點(diǎn)、分別作、的平行線相交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,則稱點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn).
(1)如圖1,點(diǎn).
①若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為________;
②若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則的值為_______;
③若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為__________;
(2)如圖2,的半徑為1.若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直績(jī):的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,的取值范圍是________;
(3)是軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),且點(diǎn)在軸上,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)的運(yùn)動(dòng)服裝專柜,對(duì)兩種品牌的遠(yuǎn)動(dòng)服分兩次采購(gòu)試銷后,效益可觀,計(jì)劃繼續(xù)采購(gòu)進(jìn)行銷售.已知這兩種服裝過(guò)去兩次的進(jìn)貨情況如下表.
第一次 | 第二次 | |
品牌運(yùn)動(dòng)服裝數(shù)/件 | 20 | 30 |
品牌運(yùn)動(dòng)服裝數(shù)/件 | 30 | 40 |
累計(jì)采購(gòu)款/元 | 10200 | 14400 |
(1)問(wèn)兩種品牌運(yùn)動(dòng)服的進(jìn)貨單價(jià)各是多少元?
(2)由于品牌運(yùn)動(dòng)服的銷量明顯好于品牌,商家決定采購(gòu)品牌的件數(shù)比品牌件數(shù)的倍多5件,在采購(gòu)總價(jià)不超過(guò)21300元的情況下,最多能購(gòu)進(jìn)多少件品牌運(yùn)動(dòng)服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長(zhǎng)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜坡AB的長(zhǎng)為65米,坡度i=1∶2.4,BC⊥AC.
(參考三角函數(shù):sin37°≈ ,cos37°≈ ,tan37°≈ )
(1)求斜坡的高度BC.
(2)現(xiàn)計(jì)劃在斜坡AB的中點(diǎn)D處挖去部分坡體,修建一個(gè)平行于水平線CA的平臺(tái)DE和一條新的斜坡BE,若斜坡BE的坡角為37°,求平臺(tái)DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,依次連接第一個(gè)矩形各邊的中點(diǎn)得到一個(gè)菱形,再依次連接菱形各邊的中點(diǎn)得到第二個(gè)矩形,按照此方法繼續(xù)下去.已知第一個(gè)矩形的兩條鄰邊長(zhǎng)分別為6和8,則第n個(gè)菱形的周長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com