【題目】如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)為1.5米,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21米,落在墻上的影高為6米,求旗桿的高度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC,∠ACB的平分線相交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:
①△BDF,△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長(zhǎng)為AB+AC;
④BD=CE.其中正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=mx2﹣2mx﹣3m是二次函數(shù).
(1)如果該二次函數(shù)的圖象與y軸的交點(diǎn)為(0,3),求m的值;
(2)在給定的坐標(biāo)系中畫(huà)出(1)中二次函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),點(diǎn)E是線段BC的中點(diǎn),分別以B,C為直角頂點(diǎn)的△EAB和△EDC均是等腰直角三角形,且在BC的同側(cè).
(1)AE和ED的數(shù)量關(guān)系為________,AE和ED的位置關(guān)系為________;
(2)在圖(2)中,以點(diǎn)E為位似中心,作△EGF與△EAB位似,點(diǎn)H是BC所在直線上的一點(diǎn),連接GH,HD,分別得到了圖(2)和圖(3).
①在圖(2)中,點(diǎn)F在BE上,△EGF與△EAB的相似比是1∶2,H是EC的中點(diǎn).
求證:GH=HD,GH⊥HD.
②在圖(3)中,點(diǎn)F在BE的延長(zhǎng)線上,△EGF與△EAB的相似比是k∶1,若BC=2,請(qǐng)直接寫(xiě)出CH的長(zhǎng)為多少時(shí),恰好使得GH=HD且GH⊥HD(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一堤壩的坡角∠ABC=62°,坡面長(zhǎng)度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊(duì)欲改變堤壩的坡面,使得坡面的坡角∠ADB=50°,則此時(shí)應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到0.01米)(參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過(guò)50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CE⊥AB于E,弦AD交CE延長(zhǎng)線于點(diǎn)F,CF﹦AF.
(1)求證:;
(2)若BC=8,tan∠DAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長(zhǎng);
(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com