【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DECF交于點G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當∠B=EGF時,第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.

【答案】(1)證明見解析;(2)證明見解析;(3)當∠B=EGF時,成立,證明見解析.

【解析】

(1)由四邊形ABCD為正方形,利用正方形的性質(zhì)得到一對角為直角,相等,且AD=DC,利用同角的余角相等得到一對角相等,利用AAS得到三角形ADE與三角形DCF全等,利用全等三角形對應(yīng)邊相等即可得證;

(2)由四邊形ABCD為矩形,得到一對直角相等,利用同角的余角相等得到一對角相等,利用兩對角相等的三角形相似得到三角形ADE與三角形DCF相似,利用相似三角形對應(yīng)邊成比例即可得證;

(3)當∠B=∠EGF時,成立,理由為:如圖3,在AD的延長線上取點M,使CM=CF,利用平行線的性質(zhì),以及同角的補角相等得到三角形ADE與三角形DCM相似,利用相似三角形對應(yīng)邊成比例即可得證.

(1)∵四邊形ABCD是正方形,

∴∠A=ADC=90°,AD=DC,

∴∠ADE+AED=90°,

DECF,

∴∠ADE+CFD=90°,

∴∠AED=CFD,

∴△ADE≌△DCF,

DE=CF

(2)∵四邊形ABCD是矩形,

∴∠A=ADC=90°,

DECF,

∴∠ADE+CFD=90°,DCF+CFD=90°,

∴∠ADE=DCF,

∴△ADE∽△DCF,

(3)解:當∠B=EGF時, 成立,

證明:如圖3,在AD的延長線上取點M,使CM=CF,

則∠CMF=CFM,

ABCD,

∴∠A=CDM,

ADBC,

∴∠B+A=180°,

∵∠B=EGF,

∴∠EGF+A=180°,

∴∠AED=CFM=CMF,

∴△ADE∽△DCM,

,即 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程,下列說法正確的是(

A. k=0時,方程沒有實數(shù)根 B. k=1時,方程有一個實數(shù)根

C. k=-1時,方程有兩個相等的實數(shù)根 D. k≠0時,方程總有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知∠CAB60°,D、E分別是邊AB、AC上的點,且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三個內(nèi)角A,BC所對的邊分別是,下列條件中,不能判定△ABC是等腰三角形的是(

A.a3b3,c4B.abc234

C.B50°,∠C80°D.A︰∠B︰∠C112

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】的解   

的解   

的解   

的解   .…

1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出第⑤,⑥個方程及它們的解.

2)請根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出第個方程及它的解,并通過計算判斷這個結(jié)論是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CDEF所截,若已知∠1=2,說明AB//CD的理由.

解:根據(jù)__________ 得∠2=3,又因為∠1=2

所以∠ ________ = _________ ,

根據(jù)____________________________ 得:_________ // _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問題,有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題方法解決一下問題;

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;

②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?

查看答案和解析>>

同步練習(xí)冊答案