【題目】、兩地相距,甲、乙兩車分別沿同一條路線從地出發(fā)駛往地,已知甲車的速度為,乙車的速度為,甲車先出發(fā)后乙車再出發(fā),乙車到達(dá)地后再原地等甲車.
(1)求乙車出發(fā)多長(zhǎng)時(shí)間追上甲車?
(2)求乙車出發(fā)多長(zhǎng)時(shí)間與甲車相距?
【答案】(1)乙車出發(fā)2小時(shí)追上甲車;(2)乙車出發(fā)、、與甲車相距
【解析】
(1)設(shè)乙車出發(fā)x小時(shí)追上甲車,由此時(shí)甲車走了(x+1)小時(shí),根據(jù)兩車所走的路程相等,列出方程進(jìn)行求解即可;
(2)分乙車沒(méi)追上甲車、乙車追上甲車、乙車到達(dá)B地而甲車沒(méi)到達(dá)B地三種情況分別解即可.
(1)設(shè)乙車出發(fā)x小時(shí)追上甲車,由此時(shí)甲車走了(x+1)小時(shí),由題意得
60(x+1)=90x,
解得:x=2,
答:乙車出發(fā)2小時(shí)追上甲車;
(2)①(小時(shí)),
②(小時(shí)),
③4小時(shí)后,甲距離地60千米,乙到達(dá)地等甲,還有可能相距50米,
(小時(shí)),
答:乙車出發(fā)2小時(shí)追上甲車;乙車出發(fā)、、與甲車相距.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為和,且.
(1)求線段的長(zhǎng);
(2)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù)為,且是方程的解,點(diǎn)在線段上,并且,請(qǐng)求出點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù);
(3)在(2)的條件下,線段和分別以個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒的速度同時(shí)向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,為線段的中點(diǎn),為線段的中點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠DAB的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)G,∠ABC的平分線交CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE,下列結(jié)論錯(cuò)誤的是( 。
A. BO=OH B. DF=CE C. DH=CG D. AB=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:不等式 ≤2+x
(1)解該不等式,并把它的解集表示在數(shù)軸上;
(2)若實(shí)數(shù)a滿足a>2,說(shuō)明a是否是該不等式的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)AB=4,分別以點(diǎn)A、B為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,則 的長(zhǎng)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=kx2﹣7x﹣7的圖象與x軸有兩個(gè)交點(diǎn),則k的取值范圍為( )
A.k>
B.k> 且k≠0
C.
D. 且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,D為AC延長(zhǎng)線上一點(diǎn),連接BD,在BC邊上取一點(diǎn)E,使得CD=CE,連接AE并延長(zhǎng)交BD于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:AF⊥BD;
(3)連接CF,點(diǎn)C 關(guān)于BD的對(duì)稱點(diǎn)是Q,連接FQ,用等式表示線段CF,CQ之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O為直線AB上的一點(diǎn),∠EOF為直角,OC平分∠BOE.
(1)如圖1,若∠AOE=45°,寫出∠COF等于多少度;
(2)如圖1,若∠AOE=求∠COF的度效(用含的代數(shù)式表示);
(3)如圖2,若∠AOE=OD平分∠AOC,且∠AOD-∠BOF=45°,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com