已知如圖,在平行四邊形中,延長(zhǎng)AD到E,延長(zhǎng)CB到F,使得DE=BF,連接EF,分別交AB、CD于點(diǎn)M、N,連結(jié)AN、CM。

(1)求證:△DEN≌△BFM
(2)試判斷四邊形ANCM的形狀,并說(shuō)明理由。

(1)證明,,DE=BF得△DEN≌△BFM               (2)四邊形ANCM是平行四邊形

解析試題分析:(1)在平行四邊形中,延長(zhǎng)AD到E,延長(zhǎng)CB到F,,AE//CF,,,,又因?yàn)镈E=BF,所以△DEN≌△BFM(ASA)
(2)由(1)知△DEN≌△BFM,則DN=BM;在平行四邊形中,AB//CD,AB=CD,∵AB//CD,所以AM//CN,又∵AB=CD,DN=BM,∴AM=AB-BM=CD-DN=CN,所以四邊形ANCM是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形)
考點(diǎn):三角形全等、平行四邊形
點(diǎn)評(píng):本題考查三角形全等、平行四邊形,要求考生掌握三角形全等是判定方法,熟悉平行四邊形的性質(zhì),會(huì)判定四邊形是平行四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,在平行四邊行ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,已知BE=4cm,AB=6cm,則AD的長(zhǎng)度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)四個(gè)頂點(diǎn)都在正方形邊上的四邊形叫做正方形的內(nèi)接四邊形.如圖,四邊形EFGH是正方形ABCD的內(nèi)接平行四邊形,且已知正方形ABCD的邊長(zhǎng)為4.
(1)若點(diǎn)E、F、G、H是正方形ABCD四邊中點(diǎn),試求四邊形EFGH的面積;
(2)設(shè)AE=x,AH=y,請(qǐng)?zhí)接懏?dāng)x、y滿(mǎn)足什么條件時(shí),四邊形EFGH是矩形.(要求寫(xiě)出過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)頂點(diǎn)所連對(duì)角線(xiàn)的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)四邊形的一對(duì)等高點(diǎn).
例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對(duì)等高點(diǎn).
(1)已知平行四邊形ABCD,請(qǐng)你在兩個(gè)備用圖中分別畫(huà)出一個(gè)只有一對(duì)等高點(diǎn)的四邊ABCE,其中E點(diǎn)分別在四邊形ABCD的形內(nèi)、形外(要求:畫(huà)出必要的輔助線(xiàn));
(2)如圖2,P是四邊形ABCD對(duì)角線(xiàn)BD上任意一點(diǎn)(不與B、D點(diǎn)重合),S1、S2、S3、S4分別表示△ABP、△CBP、△ADP、△CDP的面積.若四邊形ABCD只有一對(duì)等高點(diǎn)A、C,S1、S2、S3、S4四者之間的等量關(guān)系如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對(duì)角線(xiàn)相交于點(diǎn)O,已知AB=24cm,BC=18cm,△AOB的周長(zhǎng)是54cm那么△AOD的周長(zhǎng)是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:022

已知如圖所示,在平行四邊ABCD中,對(duì)角線(xiàn)相交于點(diǎn)O,已知AB=24cm,BC=18cm,△AOB的周長(zhǎng)是54cm那么△AOD的周長(zhǎng)是________cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案