在表達(dá)式S=
x1-x2+x3-x4
中,x1、x2、x3、x4是1、2、3、4的一種排列(即:x1、x2、x3、x4取1、2、3、4中的某一個(gè)數(shù),且x1、x2、x3、x4互不相同).則使S為實(shí)數(shù)的不同排列的種數(shù)有
 
種.
分析:若不考慮二次根式有意義的條件,因此,共有P44種排列方法,但其中x1+x3=3的共有C24P22種.所以,它們的差即為所求.
解答:解:∵x1-x2+x3-x4≥0,
∴x1+x3≥x2+x4
符合條件的排列數(shù)是:P44-C42P22=24-8=16(種)
故答案為:16.
點(diǎn)評(píng):本題考查了排列與組合的問題.解答此題時(shí),要分清排列與組合的區(qū)別.排列與元素的順序有關(guān),組合與順序無關(guān).如231與213是兩個(gè)排列,2+3+1的和與2+1+3的和是一個(gè)組合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線過點(diǎn)A(x1,0)、B(x2,0)、C(0,-8),x1、x2是方程
1
2
x2-x-4=0的兩根,且x1>x2,點(diǎn)D是此拋物線的頂點(diǎn).
(1)求這條拋物線的表達(dá)式;
(2)填空:(1)問題中拋物線先向上平移3個(gè)單位,再向右平移2個(gè)單位,得到的拋物線是
y=(x-3)2-6
y=(x-3)2-6

(3)在第一象限內(nèi),問題(1)中的拋物線上是否存在點(diǎn)P,使S△ABP=
1
5
S四邊形ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃石)已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(diǎn)(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
(1)求拋物線C1的頂點(diǎn)坐標(biāo).
(2)已知實(shí)數(shù)x>0,請(qǐng)證明x+
1
x
≥2,并說明x為何值時(shí)才會(huì)有x+
1
x
=2.
(3)若將拋物線先向上平移4個(gè)單位,再向左平移1個(gè)單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個(gè)不同點(diǎn),且滿足:∠AOB=90°,m>0,n<0.請(qǐng)你用含m的表達(dá)式表示出△AOB的面積S,并求出S的最小值及S取最小值時(shí)一次函數(shù)OA的函數(shù)解析式.
(參考公式:在平面直角坐標(biāo)系中,若P(x1,y1),Q(x2,y2),則P,Q兩點(diǎn)間的距離為
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)表達(dá)式為y=
-4x

(1)畫出此反比例函數(shù)圖象并寫出此函數(shù)圖象的一個(gè)特征.
(2)若點(diǎn)(x1,y1),(x2,y2)都在此反比例函數(shù)圖象上且x1>x2,比較y1與y2的大。ㄖ苯訉懗鼋Y(jié)果)
(3)現(xiàn)有一點(diǎn)A(m,-4)在此反比例函數(shù)圖象上,另一點(diǎn)B(2,-1),在x軸上找一點(diǎn)P使得△ABP的周長(zhǎng)最小,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省郴州市二中高一奧賽輔導(dǎo)班選拔賽數(shù)學(xué)試卷(解析版) 題型:填空題

在表達(dá)式S=中,x1、x2、x3、x4是1、2、3、4的一種排列(即:x1、x2、x3、x4取1、2、3、4中的某一個(gè)數(shù),且x1、x2、x3、x4互不相同).則使S為實(shí)數(shù)的不同排列的種數(shù)有     種.

查看答案和解析>>

同步練習(xí)冊(cè)答案