【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y=(k≠0)上,AB∥x軸,交y軸于點C,若AB=2AC,則k的值為( 。
A.6B.8C.10D.12
【答案】D
【解析】
過點A作AD⊥x軸于D,過點B作BE⊥x軸于E,得出四邊形ACOD是矩形,四邊形BCOE是矩形,得出S矩形ACOD=4,S矩形OEBF=k,根據(jù)AB=2AC,即BC=3AC,即可求得矩形BCOE的面積,根據(jù)反比例函數(shù)系數(shù)k的幾何意義即可求得k的值.
解:過點A作AD⊥x軸于D,過點B作BE⊥x軸于E,
∵AB∥x軸,
∴四邊形ACOD是矩形,四邊形BCOE是矩形,
∵AB=2AC,
∴BC=3AC,
∵點A在雙曲線y=上,
∴S矩形ACOD=4,
同理S矩形BCOEF=k,
∴S矩形BCOE=3S矩形ACOD=12,
∴k=12,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點E、F,FG平分∠EFD,EG⊥FG于點G,若∠CFN=110°,則∠BEG=( 。
A. 20°B. 25°C. 35°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為多少m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是菱形ABCD的對角線,E是邊AD的中點,F是邊AB上的一點,將△AEF沿EF所在的直線翻折得到△A′EF,連結(jié)A′C.若AB=5,BD=6,當(dāng)點A′到∠A的兩邊的距離相等時,A′C的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①點E、F分別在正方形ABCD的邊BC、CD上,連結(jié)AE、AF、EF,將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若BE=2,DF=3,求AB的長;
拓展:如圖②點E、F分別在四邊形BACD的邊BC、CD上,且∠B=∠D=90°.連結(jié)AE、AF、EF將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若∠EAF=30°,AB=4,則△ECF的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=90°,點C在邊AM上,AC=2,點B為邊AN上一動點,連接BC,△A′BC與△ABC關(guān)于BC所在的直線對稱,點D,E分別為AB,BC的中點,連接DE并延長交A′C所在直線于點F,連接A′E,當(dāng)△A′EF為直角三角形時,AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+4x+c(a≠0)的圖象與x軸交A,B兩點,與y軸交于點C,直線y=﹣2x﹣6經(jīng)過點A,C.
(1)求該二次函數(shù)的解析式;
(2)點P為第三象限內(nèi)拋物線上的一個動點,△APC的面積為S,試求S的最大值;
(3)若P為拋物線的頂點,且直角三角形APQ的直角頂點Q在y軸上,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAC=30°,將菱形ABCD繞點A逆時針旋轉(zhuǎn)120°,點B的對應(yīng)點為點B′,點C的對應(yīng)點為點C′,點D的對應(yīng)點為點D′,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=3cm.點P從點A出發(fā),以每秒1cm的速度向終點B運動,同時點Q從點B出發(fā),以每秒3cm的速度沿BC﹣CD﹣DA向終點A運動,到達各自終點時停止運動.設(shè)動點的運動時間為x秒,△PBQ的面積為ycm2,則能正確表示△PBQ的面積y與時間x的關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com