【題目】甲、乙兩家體育用品商店出售同樣的乒乓球和乒乓拍,乒乓球拍每幅定價20元,乒乓球每盒定價5元,現(xiàn)兩家商店搞促銷活動.甲店:每買一副球拍送一盒乒乓球;乙店:按定價的8折優(yōu)惠.某班級需購球拍4副,乒乓球若干盒(不少于4盒).

1)設購買乒乓球盒數(shù)為(盒),在甲店購買的付款數(shù)為(元);在乙店購買的付款數(shù)為(元),分別寫出的函數(shù)關系式,并寫出定義域.

2)就乒乓球的盒數(shù)討論去哪家購買合算?

【答案】1,;(2)當x=4時,兩家商店一樣合算,當時,去乙商店更合算.

【解析】

1)根據(jù)兩家商店的促銷方案即可解答;

2)分別當,,時,計算x的取值范圍,即可解答.

解:(1)在甲商店買4副球拍和(x-4)盒乒乓球,

,;

乙店:按定價的8折優(yōu)惠,

,;

;

2)當時,即,解得:,不符合題意;

時,即,解得:,

時,即,解得:

∴當x=4時,兩家商店一樣合算,當時,去乙商店更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地2016年為做好“精準扶貧”,投入資金1200萬元用于異地安置,并規(guī)劃投入異地安置資金的年平均增長率在三年內(nèi)保持不變,已知2018年在2016年的基礎上增加了投入異地安置資金1500萬元.

12017年該地投入異地安置資金為多少元?

2)在2017年異地安置的具體實施中,該地要求投入用于優(yōu)先搬遷租房獎勵的資金不低于2017年該地投入異地安置資金的25%.規(guī)定前1000戶(含第1000)戶)每戶每天獎勵8元,1000戶以后每戶每天獎勵5元,按租房400天計算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;BE2+DC2=DE2

其中正確的是______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標系,使A點坐標為(-24),B點坐標為(-42);

(2)(1)的前提下,在第二象限內(nèi)的格點上找一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點的坐標是;

(3)((2)中△ABC的周長(結(jié)果保留根號);

(4)畫出((2)中ABC關于y軸對稱的A'B'C'.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形ABCD中,AB6cm,BC18cmAC的垂直平分線EF分別交AD、BC于點E、F,垂足為O

1)如圖1,連接AFCE.求證四邊形AFCE為菱形,并求AF的長;

2)如圖2,動點PQ分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點PAFBA停止,點QCDEC停止.在運動過程中.

①已知點P的速度為每秒10cm,點Q的速度為每秒6cm,運動時間為t秒,當AC、PQ四點為頂點的四邊形是平行四邊形時,求t的值.

②若點PQ的運動路程分別為x、y(單位:cmxy≠0),已知A、CP、Q四點為頂點的四邊形是平行四邊形,求xy滿足的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax+c2的圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為美化校園環(huán)境,某校計劃在一塊長為100米,寬為60米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設通道寬為米.

1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;

2)如果通道寬(米)的值能使關于的方程有兩個相等的實數(shù)根,并要求修建的通道的寬度不少于5米且不超過12米,求出此時通道的寬.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,已知,,D,,如何求AD的長呢?

心怡同學靈活運用對稱知識,將圖形進行翻折變換,巧妙地解答了此題,

請按照她的思路,探究并解答下列問題:

1)分別以AB、AC為對稱軸,畫出、的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;

2)設,利用勾股定理,建立關于x的方程模型,求出x的值.

查看答案和解析>>

同步練習冊答案