(2009•十堰)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是( )

A.π
B.24π
C.π
D.12π
【答案】分析:易得此幾何體為兩個圓錐的組合體,那么表面積為兩個圓錐的側(cè)面積,應(yīng)先利用勾股定理求得AB長,進而求得圓錐的底面半徑.利用圓錐的側(cè)面積=底面周長×母線長÷2求解即可.
解答:解:AC=4,BC=3,由勾股定理得,AB=5,斜邊上的高=
由幾何體是由兩個圓錐組成,∴幾何體的表面積=×2×π×(3+4)=π,故選C.
點評:本題利用了勾股定理,圓的周長公式和扇形面積公式求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市義蓬一中中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷(瓜瀝二中 金華 沈國芳)(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省鹽城市解放路實驗學校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市中考數(shù)學試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

同步練習冊答案