【題目】某校為了了解學(xué)生的身高情況,隨機對該校男生、女生的身高進行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成下面的統(tǒng)計圖表:

組別

A

B

C

D

E

身高(cm

x150

150x155

155x160

160x165

x165

根據(jù)圖表中信息,回答下列問題:

1)在樣本中,男生身高的中位數(shù)落在 組(填組別序號),女生身高在B組的人數(shù)有 人;

2)已知該校共有男生500人,女生480人,請估計身高在155x165之間的學(xué)生約有多少人?

3)從男生樣本的A、B兩組里,隨機安排2人參加一項活動,求恰好是1人在A組、1人在B組的概率.

【答案】1D;122541人 (3

【解析】

1)先求出調(diào)查的男生總?cè)藬?shù),然后根據(jù)中位數(shù)的定義即可得出結(jié)論,根據(jù)調(diào)查的男生總?cè)藬?shù)和女生總?cè)藬?shù)相同,并求出女生身高在B組的人數(shù)所占調(diào)查的女生人數(shù)的百分比即可求出結(jié)論;

2)分別求出C組中的男生人數(shù)和女生人數(shù),求和即可;

3)根據(jù)題意,列出表格,然后結(jié)合概率公式求概率即可.

解:(1)調(diào)查的男生總?cè)藬?shù)為2412148=40(人)

由條形統(tǒng)計圖可得:男生身高的中位數(shù)落在D組,

∵抽取的樣本中,男生、女生的人數(shù)相同,

∴調(diào)查的女生總?cè)藬?shù)為40

女生身高在B組的人數(shù)有40×(120%30%15%5%=12(人)

故答案為:D;12

2500×480×(30%15%=325216=541(人)

答:估計身高在155x165之間的學(xué)生約有541人;

3)設(shè)A組的兩個男生表示為A1、A2B組的四個男生表示為B1、B2B3、B4,列表如下:

由表格可知:共有30種等可能的結(jié)果,其中恰好是1人在A組、1人在B組的結(jié)果有16

∴恰好是1人在A組、1人在B組的概率為16÷30=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2mxn的圖像與坐標(biāo)軸交于AB、C三點,其中A點的坐標(biāo)為、點B的坐標(biāo)是

(1)求該二次函數(shù)的表達式及點C的坐標(biāo);

(2)若點D的坐標(biāo)是,點F為該二次函數(shù)在第四象限內(nèi)圖像上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF.設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖像上時,請求出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“全民防控新冠病毒”期間某公司推出一款消毒產(chǎn)品,成本價8/千克,經(jīng)過市場調(diào)查,該產(chǎn)品的日銷售量(千克)與銷售單價(元/千克)之間滿足一次函數(shù)關(guān)系,該產(chǎn)品的日銷售量與銷售單價幾組對應(yīng)值如表:

銷售單價(元/千克)

12

16

20

24

日銷售量(千克)

220

180

140

(注:日銷售利潤日銷售量(銷售單價成本單價)

1)求關(guān)于的函數(shù)解析式(不要求寫出的取值范圍);

2)根據(jù)以上信息,填空:

_______千克;

②當(dāng)銷售價格_______元時,日銷售利潤最大,最大值是_______元;

3)該公司決定從每天的銷售利潤中捐贈100元給“精準(zhǔn)扶貧”對象,為了保證捐贈后每天的剩余利潤不低于1500元,試確定該產(chǎn)品銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長為的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.從一個格點移動到與之相距的另一個格點的運動稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點經(jīng)過一次跳馬變換可以到達點,,等處現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點經(jīng)過跳馬變換到達與其相對的頂點,最少需要跳馬變換的次數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD在坐標(biāo)平面內(nèi)的位置如圖所示,已知A(-1,5),D(-2,2),對角線交點M(-3,3),如果雙曲線x0)與菱形ABCD有公共點,那么k的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AB=CD,點E、FBC上,且BE=CF

1)求證:△ABE≌△DCF

2)試證明:以A、F、D、E為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春天是放風(fēng)箏的好時節(jié),小明為了讓風(fēng)箏順利起飛,特地將風(fēng)箏放在坡度為12.4的山坡上,并站在視線剛好與風(fēng)箏起飛點A齊平的B處,起風(fēng)后小明開始往下跑26米至坡底C處,并繼續(xù)沿平地向前跑16米到達D處后站在原地開始調(diào)整,小明將手中的線軸剛好舉到與視線齊平處測得風(fēng)箏的仰角是37°,此時風(fēng)箏恰好升高到起飛時的正上方E處.已知小明視線距地面高度為1.5米,圖中風(fēng)箏E、A、BC、D五點在同一平面,則風(fēng)箏上升的垂直距離AE約為( 。┟祝▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

A.34.2B.32.7C.31.2D.22.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC90°

1)如圖1,若直線ADBC相交于M,過點BAM的垂線,垂足為D,連接CD并延長BDE,使得DEDC,過點EEFCDF,證明:ADEF+BD

2)如圖2,若直線ADCB的延長線相交于M,過點BAM的垂線,垂足為D,連接CD并延長BDE,使得DEDC,過點EEFCDCD的延長線于F,探究:AD、EFBD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P為△ABC邊上一動點,沿著ACB的路徑行進,點PPDAB,垂足為D,設(shè)ADx,△APD的面積為y,圖2y關(guān)于x的函數(shù)圖象,則依據(jù)圖中的數(shù)量關(guān)系計算△ACB的周長為(

A.B.15C.D.

查看答案和解析>>

同步練習(xí)冊答案