【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動(dòng),則k的值為( )
A. 3 B. 4 C. 2.5 D. 7
【答案】A
【解析】連接CO,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似,得到△AOD∽△OCE,再根據(jù)相似三角形的性質(zhì)得到面積比=3,然后根據(jù)三角形的面積和反比例函數(shù)的系數(shù)性質(zhì)求解即可.
連接CO,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,
∵連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,
∴CO⊥AB,∠CAB=30°,
則∠AOD+∠COE=90°,
∵∠DAO+∠AOD=90°,
∴∠DAO=∠COE,
又∵∠ADO=∠CEO=90°,
∴△AOD∽△OCE,
∴=tan60°=,則=3,
∵點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),
∴|xy|=ADDO=×9=,
∴k=EC×EO=,
則EC×EO=3.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(2m+1)x+m﹣3.
(1)若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值;
(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍;
(3)若這個(gè)函數(shù)是一次函數(shù),且圖象不經(jīng)過(guò)第四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段,點(diǎn)、點(diǎn)在直線上,并且,AC∶CB=1∶2,BD∶AB=2∶3,則AB=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中,為一元二次方程的是( )
A. x=2y-3 B. +1=3 C. x2+3x-1=x2+1 D. x2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.
(1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?
(2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形的紙片ABCD沿BD對(duì)折,使C點(diǎn)落在E點(diǎn)處,BE與AD相交于點(diǎn)O。
(1)由折疊可知△BCD≌△BED,除此之外,圖中還存在其他的全等三角形,請(qǐng)寫出其他一組全等三角形__________________.
(2)圖中有等腰三角形嗎?請(qǐng)你找出來(lái)__________________.
(3)若AB=6,BC=8,求OB的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,∠B=α,在AB,BC上分別找一點(diǎn)E,F,使△DEF的周長(zhǎng)最小,此時(shí),∠EDF=______。(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.
(1)寫出點(diǎn)A,B,C的坐標(biāo)并畫出三角形ABC;
(2)若將三角形ABC平移后得到三角形A1B1C1,平移后點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為(2,1),請(qǐng)畫出三角形A1B1C1,并寫出A1,B1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一.為此某市教育局對(duì)該市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com