精英家教網 > 初中數學 > 題目詳情

【題目】如圖,把等腰直角放在直角坐標系內,其中,點、的坐標分別為,將等腰直角沿軸向右平移,當點落在直線上時,則線段掃過的面積為________

【答案】

【解析】

根據題意,線段BC掃過的面積應為一平行四邊形的面積,其高是AC的長,底是點C平移的路程.求當點C落在直線y=x-2上時的橫坐標即可.

∵∠CAB=90°,點A、B的坐標分別為(1,0)、(4,0),
∴AC=3,BC=3 ,
當點C落在直線y=x-2上時,如圖,


故四邊形BB′C′C是平行四邊形,
則A′C′=AC=3,
把y=3代入直線y=x-2,
解得x=5,即OA′=5,
故AA′=BB′=4,
則平行四邊形BB′C′C的面積=BB′×A′C′=4×3=12.
故答案是:12.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向移動.點E、G的速度均為2cm/s,點F的速度為4cm/s,當點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設移動開始后第t秒時,△EFG的面積為S(cm2
(1)當t=1秒時,S的值是多少?
(2)寫出S和t之間的函數解析式,并指出自變量t的取值范圍;
(3)若點F在矩形的邊BC上移動,當t為何值時,以點E、B、F為頂點的三角形與以點F、C、G為頂點的三角形相似?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明和小穎在如圖所示的四邊形場地上,沿邊騎自行車進行場地追逐賽(兩人只要有一個人回到自己的出發(fā)點,則比賽結束).小明從A地出發(fā),沿A→B→C→D→A的路線勻速騎行,速度為8/秒;小穎從B地出發(fā),沿B→C→D→A→B的路線勻速騎行,速度為6/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.設騎行時間為t秒,假定他們同時出發(fā)且每轉一個彎需要額外耗時2秒.

(1)填空:當t=_____秒時,兩人第一次到B地的距離相等;

(2)試問小明能否在小穎到達D地前追上她?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=ax2+bx+c(a≠0)的圖象與函數y=x﹣ 的圖象如圖所示,則下列結論:①ab>0;②c>﹣ ;③a+b+c<﹣ ;④方程ax2+(b﹣1)x+c+ =0有兩個不相等的實數根.其中正確的有(
A.4 個
B.3 個
C.2 個
D.1 個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現(xiàn)在,共享單車已遍布深圳街頭,其中較為常見的共享單車有“A.摩拜單車”、“B.小藍單車”、“C.OFO單車”、“D.小鳴單車”、“E.凡騎綠暢”等五種類型.為了解市民使用這些共享單車的情況,某數學興趣小組隨機統(tǒng)計部分正在使用這些單車的市民,并將所得數據繪制出了如下兩幅不完整的統(tǒng)計圖表 (圖1、圖2):

根據所給信息解答下列問題:
(1)此次統(tǒng)計的人數為人;根據已知信息補全條形統(tǒng)計圖;
(2)在使用單車的類型扇形統(tǒng)計圖中,使用E 型共享單車所在的扇形的圓心角為度;
(3)據報道,深圳每天有約200余萬人次使用共享單車,則其中使用E型共享單車的約有萬人次.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和4,∠A=120°.則陰影部分面積是 . (結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AD是高,CE是中線,點G是CE的中點,DG⊥CE,點G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=66°,求∠BCE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線m⊥n.在平面直角坐標系xOy中,x軸∥m,y軸∥n.如果以O1為原點,點A 的坐標為(1,1).將點O1平移2 個單位長度到點O2 , 點A的位置不變,如果以O2為原點,那么點A的坐標可能是( )

A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數和的完全平方公式

D.兩數差的完全平方公式

2)該同學因式分解的結果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

同步練習冊答案